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I. MOTIVATION

Visual Semantic Navigation (VSN) is the ability of a robot

to learn visual semantic information for navigating in unseen

environments. Visual representations are learnt to reduce the

exploration time and better generalize to unseen scenes and

objects. These VSN models are typically tested in those

virtual environments where they are trained, hence, we do

not yet have an in-depth analysis of how these models behave

in the real world. In this work we propose, for the first time,

a detailed study of how several state-of-the-art VSN models

behave when embedded in real robotic platforms. We release

a novel ROS-based framework2 for VSN, so that any VSN-

model can be easily deployed in any ROS-compatible robot

and tested in the real world. Fig. 1 depicts how these VSN

models work when deployed on our robotic platforms.
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Fig. 1. ROS VSN framework working scheme.

II. ROS VISUAL SEMANTIC NAVIGATION

The ROS framework we present consists of two pack-

ages: ros visual semantic navigation (RV SN )

and ros discrete move (RDM ). The RV SN package

embeds the VSN models in a ROS node that predicts discrete

actions from visual inputs taken from robot sensors. The ROS

nodes and services provided by the RDM package convert

the discrete actions predicted by the model to continuous

input velocities. These velocities are sent to the robot motors

to produce the movement associated with the predicted

action.
III. MAIN RESULTS

We have performed an experimental evaluation of two state-

of-the-art VSN models (VLV [1] and PIRLNAV [2]) in two

robotics platforms, by using our novel ROS-based software

architecture. The robots invited to our experiments have been

Turtlebot 2 and LOLA2 [3]. We have designed a navigation

experiment that mimics the evaluation performed in the

OBJECTNAV [4] task. First, we have defined 15 starting

positions in an apartment of 75 m2 (Fig 2 shows 2 of these
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Fig. 2. VSN results. a) Shows the floor plan where the experiments where
performed, indicating two of the starting positions used. b) and c) show the
egocentric view of the robot while navigating using VLV and PIRLNAV

models, respectively.

Models SR (Real world) SR (virtual environment)

VLV [1] 29.33% 79%

PIRLNAV [2] 21.11% 65%

TABLE I

Real world success rate against simulation.

positions and the trajectories followed by the robot). From

these positions, the robot is asked to navigate towards the

different object categories that every VSN model has been

trained to reach. We perform navigation experiments for

every target and measure the success of the episode if the

robot reaches the selected object category in less than 150

steps, without collisions. We report the success rate (SR)

of the VSN models as the percentage of episodes in which

navigation was successful. Table I compares the SR obtained

by these VSN models in virtual environments and in our real-

world experimental setup.

There is an important gap that we hope can be studied

and reduced thanks to the use of our VSN ROS library.

More results are shown in this video3. Finally, our VSN

system is shown to robustly operate through long-duration

experiments. With the LOLA2 and Turtlebot2 our VSN ROS

architecture was running for more than 38 hours, and the

robots traveled a cumulative distance of 5.22 km.

REFERENCES

[1] M. Chang, A. Gupta, and S. Gupta, “Semantic Visual Navigation by
Watching Youtube Videos,” in NeurIPS, 2020.

[2] R. Ramrakhya, D. Batra, E. Wijmans, and A. Das, “PIRLNav: Pre-
training with Imitation and RL Finetuning for ObjectNav,” in CVPR,
2023.
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