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Abstract

Dense video captioning involves detecting and describing events within video
sequences. Traditional methods operate in an offline setting, assuming the entire
video is available for analysis. In contrast, in this work we introduce a ground-
breaking paradigm: Live Video Captioning (LVC), where captions must be
generated for video streams in an online manner. This shift brings unique chal-
lenges, including processing partial observations of the events and the need for a
temporal anticipation of the actions.

We formally define the novel problem of LVC and propose innovative evalua-
tion metrics specifically designed for this online scenario, demonstrating their
advantages over traditional metrics. To address the novel complexities of LVC,
we present a new model that combines deformable transformers with temporal
filtering, enabling effective captioning over video streams.

Extensive experiments on the ActivityNet Captions dataset validate the proposed
approach, showcasing its superior performance in the LVC setting compared to
state-of-the-art offline methods. To foster further research, we provide the results
of our model and an evaluation toolkit with the new metrics integrated at:
https://github.com/gramuah/lvc.

Keywords: dense video captioning; online video analysis; transformers; deep learning;
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Fig. 1 Above: Traditional models of dense video captioning work offline, accessing the whole video
to generate the captions. Down: The live video captioning models must generate the captions for the
video stream, in an online manner, and working with partial observations of the video.

1 Introduction

As a growing field within video understanding, video captioning has gathered sig-
nificant attention recently [1-5]. The goal of these video captioning models is to
produce a natural sentence that encapsulates the primary event in a short video.
These models utilize datasets tailored to the described problem (e.g., MSR-VTT [6],
VATEX [7]), where short video segments and their corresponding annotations in
the form of captions are provided. Nevertheless, because real-world videos are often
lengthy, untrimmed, and feature multiple simultaneous events alongside background
content, the aforementioned single-sentence video captioning models typically produce
lackluster and less informative descriptions. To tackle this more complex scenario, cap-
tioning approaches must both locate and describe the events occurring in long videos;
this problem is known as dense video captioning [1, 8-12].

The majority of real-life videos encompass numerous events that may unfold simul-
taneously. For instance, in a video featuring “a waiter carrying food to a table” one
may also observe another “individual eating and drinking” or a “woman sitting down”.
Dense video captioning models must generate descriptions for each event unfolding in
a video, precisely indicating the start and end times of each event.

However, the current state-of-the-art in dense video captioning primarily offers
offline solutions. As illustrated in the top part of Figure 1, these models assume



access to the entire video before generating captions. In contrast, our work intro-
duces a paradigm shift termed Live Video Captioning (LVC), depicted in the bottom
part of Figure 1. In LVC, the challenge is to generate dense captions operating in
an online manner. This introduces significant new challenges for traditional offline
models. Firstly, in an LVC scenario, it is not feasible to access the entire video to gen-
erate dense captions. LVC models must work with partial video observations, ideally
through video streams, continuously generating dense captions as events unfold. This
restriction is particularly detrimental to models requiring an action proposal gener-
ation phase, e.g. [11, 13, 14]. Secondly, LVC models must be capable of anticipating
actions. Working with partial observations limits the semantic information available
compared to traditional offline models, making event identification more challenging.
Lastly, LVC solutions need to incorporate temporal attention and filtering mechanisms
to refine their caption predictions as the video streams evolve.

From an applicability standpoint, the LVC problem introduces new scenarios where
live captioning is crucial, and traditional offline models would fail to perform effec-
tively. LVC solutions must strike a balance between precision and speed, as both are
equally vital. The utility of LVC models is substantial, enabling a wide range of appli-
cations, from content summarization and accessibility support in live broadcasts to
online perception and decision-making in robotics and video surveillance. While the
former paves the way for novel, accessible, and interactive multimedia experiences, the
latter will be crucial for the next generation of autonomous navigation and human-
robot interaction systems. These are, without question, scenarios where traditional
offline video captioning models fall short.

Interestingly, to the best of our knowledge, the problem of Live Video Caption-
ing (LVC) has not been extensively investigated. In this work, we make several key
contributions. First, we offer a formal description of the LVC problem, detailed in
Section 3.1. Second, we introduce a novel model for LVC that combines deformable
transformers with a temporal filtering mechanism to generate dense captions over video
streams, as described in Section 3.2. Third, we propose new evaluation metrics specif-
ically designed for the online scenario, demonstrating that traditional offline metrics
are inadequate, as discussed in Section 3.3. Finally, in Section 4, we provide a compre-
hensive experimental evaluation using the ActivityNet Captions dataset, showcasing
both the performance of our new LVC model and the effectiveness of the new metrics.
We also include a comparison with state-of-the-art offline methods, highlighting their
limitations in addressing the new online scenario

2 Related work

Dense video captioning presents a multifaceted challenge, intertwining event local-
ization and event captioning. Krishna et al. [13] introduced the inaugural dense
video captioning model, incorporating a multi-scale proposal module for localization
alongside an attention-based LSTM for contextually informed caption generation.
Subsequent research endeavors have aimed to enhance event representations through
various means, including context modeling [15, 16], event-level relationships [12], and



multi-modal feature fusion [9, 17], thus facilitating more precise and informative
caption generation.

Previous methods have struggled with integrating the localization and caption-
ing modules effectively. Attempts to address this issue have led researchers to explore
interactions between the two sub-tasks. Li et al. [18] propose a proxy task, pre-
dicting language rewards of generated sentences, to enhance the optimization of the
localization module. Similarly, Zhou et al. [19] introduce a differential masking mecha-
nism, linking the gradient flow from captioning loss to proposals’ boundaries, thereby
facilitating joint optimization. In [10], the proposed approach exploits inter-task inter-
actions by ensuring both sub-tasks share the same intermediate features. Furthermore,
the method employs a one-to-one matching strategy between intermediate feature
vectors and target event instances, resulting in discriminative features for captioning.

All the aforementioned methods share an important feature: they tackle the prob-
lem using pipelines designed to operate offline. In other words, the results of all these
models are optimal when they have access to the entire video for which they generate
the dense captions.

We propose in this work an approach that addresses the problem of dense video
captioning in an online fashion. This new problem is named as live video captioning
(LVC). Ideally, in the LVC problem, the captions must be generated as soon as possible,
by processing the video stream. This means that the models need to be adapted to
work with partial observations of the video content, and, under this condition, produce
dense captions as accurate as possible. Note that other online approaches have been
explored, for example, in the different problem of action detection (e. g. [20-26]).

For the dense video captioning problem, only, to the best of our knowledge, Hori et
al. [27] have proposed a multi-modal captioning approach that uses a timing detector
so that the captions can be generated in the early stages of an event-triggered video
clip. This problem can be termed as early video captioning, where the target consists
in evaluating the latency ratio needed to reach the same performance of an offline video
captioning model for an event-triggered video. Similar simplified experimental setups
where explored in the context of early event detection in video, e.g. [28-30]. Note that
these problems are different from our live video captioning. We claim these simplified
setups are not representative for practical applications, where occurrences of possibly
many different actions need to be detected and a correct caption generated in an
online manner, in long video recordings with widely varying content. When it comes
to a live video captioning system, the model should be continuously processing the
video stream, and, when necessary, producing dense video captions. This necessitates
precisely recognizing the current action at any point of its development. Furthermore,
to complete the LVC task, one must distinguish the action from a range of negative
inputs, such as background frames in which no pertinent actions are occurring.

Overall, we propose a live video captioning model that parallelizes localization,
selection, and captioning tasks within a single end-to-end model, based on deformable
transformers [31, 32], simplifying the process while ensuring the online generation of
accurate and coherent captions. Specifically, our approach is based on the deformable
transformer of Zhu et al. [32], which is a model that was introduced as an architec-
ture to improve the performance of object detectors by attending to sparse spatial
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Table 1 Review of other models for the problem of dense video captioning. We organize the
literature based on whether the models address the problems of localization and captioning jointly,
and whether they can handle the proposed LVC scenario or operate offline. We also summarize
some of the main contributions of the works.

locations and incorporating multi-scale feature representations. We have adapted this
deformable transformer architecture to process video sequences for the novel prob-
lem of LVC. Our localization and captioning modules process the streaming video,
producing online dense captions that are enhanced with an extra filtering process.

Similar transformers-based architectures were also used in offline dense video cap-
tioning models, e.g. [9, 10]. For instance, while both our model and [10] leverage
deformable transformers, their architectural designs reflect fundamentally different
objectives due to the contrasting demands of their respective tasks. In general, the
main differences with respect the previous offline dense video captioning models [9, 10],
that also use transformer-based architectures are as follows. First, they assume full
access to the entire video sequence during both training and inference. This enables
the models to perform holistic event localization and captioning by leveraging global
temporal information. In contrast, our LVC model processes partial, sequentially avail-
able video segments under causal constraints, where no future frames are accessible.
To accommodate this, our deformable transformer is modified to focus solely on the
features within the current segment and refine predictions dynamically as new frames
arrive. Second, in the offline dense video captioning setting, a multi-scale deformable
attention can be used to process densely extracted frame features from the entire video.
This attention mechanism ensures that the model captures relationships between
temporally distant events. In our LVC model, we adapt the multi-scale deformable
attention mechanism to operate on temporally truncated input streams. For instance,
our event queries are tailored for online processing, designed to anticipate and refine
event boundaries dynamically as frames are processed. This iterative refinement aligns
with the causal nature of the LVC task, allowing the model to balance precision
with latency. We also add a temporal filtering mechanism, integrated with the learn-
able event queries, to dynamically generate the dense captions for the events within
the limited temporal context available, enabling precise and actionable online predic-
tions. These distinctions highlight how our use of deformable transformers is uniquely
adapted to the challenges of LVC.

In table 1 we provide a global comparison of the main models for dense video
captioning. Note that only our approach has been specifically designed for the novel
LVC problem.



3 Live Video Captioning

3.1 Live Video Captioning: problem formulation

We define the problem of Live Video Captioning (LVC) as the process of obtaining
dense captions for a video stream as soon as the video frames are available. Unlike
the traditional video captioning scenario, which we refer to as offline video captioning,
we do not have access to the entire video for analysis. Instead, LVC models can only
access the content coming from a video stream up to the time instant ¢ to generate
caption predictions for that instant. In other words, LVC models process the video in
an online fashion, implying that the dense caption generation system has access to the
current information of the video and past information, but never future information.
Therefore, these systems are inherently causal.

LVC models face unique challenges when compared to traditional offline caption-
ing systems. In offline systems, the model has access to the entire video, allowing for
accurate temporal segmentation and caption generation after full observation. In con-
trast, LVC models must generate captions in an online fashion, working with partial,
often incomplete frames, and make predictions with limited information. This online
constraint introduces several challenges: (i) accurate temporal segmentation with min-
imal context, (ii) the need for anticipation of actions before they are fully visible, and
(iii) ensuring that caption generation remains both fast and precise.

We must assume that for LVC solutions, there is always information yet to be
revealed. Caption predictions are made based on partial content of the video, in case
it is already recorded. However, it is in the context of live video streams where LVC
models gain special relevance. We can think of the following applications and prob-
lems. For instance, consider a surveillance camera monitoring a busy public space,
where the flow of events is unpredictable. In such a scenario, we can never be certain
about what might occur next—a sudden altercation, a person leaving an unattended
bag, or an individual entering a restricted area. However, it is crucial to generate dense
captions as soon as the visual information is available to the system. This capability
enables timely detection and response to critical events, enhancing safety and situ-
ational awareness. Another illustrative example is a robot equipped with a camera,
tasked with generating detailed descriptions of the scenes it encounters while navigat-
ing a dynamic environment, such as a bustling factory floor or a crowded shopping
mall. The robot might describe activities like workers assembling parts, customers
interacting with products, or obstacles in its path. This continuous scene interpretation
is vital for tasks like human-robot interaction, navigation, and situational understand-
ing. Any traditional offline model for dense video captioning would not be able to
generate these descriptions, as these models have been trained to operate only when
the entire video is available. For instance, models that rely on action proposals (e. g.
[13, 15, 16]) would be severely affected. In the novel LVC paradigm, it is not desirable
to wait until the action is finished to have a correct caption prediction for it.

Therefore, a critical advantage of Live Video Captioning (LVC) is its ability to
anticipate actions and provide temporally precise localization of events, a limitation
commonly observed in offline dense video captioning methods. For instance, in a video
where a person begins to raise a glass to drink, followed by a second person setting



a plate on the table, offline methods would generate overlapping captions like ’[2.0s-
6.0s] A person moves’ and ’[5.0s-9.0s] A person interacts with an object,” failing to
distinguish between the two actions clearly or provide precise temporal boundaries.
By contrast, LVC models would produce ’[2.0s-4.0s] A person raises a glass’ and ’[4.0s-
6.0s] Another person places a plate on the table,” with non-overlapping, accurate
temporal segmentation. This novel scenario not only allows for early recognition of
ongoing events but also improves temporal granularity, enabling a clearer distinction
between simultaneous or sequential actions. These capabilities are vital for applications
requiring immediate and accurate action detection, such as the monitoring systems or
interactive robotics described.

In the new context of LVC, we proceed to define the fundamental properties that
characterize it, which are as follows:

1. Input assumption: Streaming videos are assumed to be the natural inputs for
LVC approaches, where neither length nor content of the entire video are accesible.

2. Timeliness: Captions must be generated as soon as the actions unfold.

3. Causality: Dense caption generation must be causal, so future frames cannot be
used.

4. Temporal adjustment: The caption prediction must be adjusted to the temporal
information available up to the time corresponding to the prediction instant.

5. Irreversibility: No post-processing or subsequent thresholding of caption scores
can be applied once they are generated for a previous instant of time. LVC methods
cannot revise past generated captions.

3.2 Our Live Video Captioning Model

For the implementation of our LVC model, we drew inspiration from the latest
advances in solutions for offline dense video captioning [9, 10], where transformer-based
architectures [31] were used.

As it is shown in Figure 2, we develop a deformable transformer model applied to
the novel online dense video captioning problem. The deformable transformer model
was introduced in [32] as an architecture to improve the performance of object detec-
tors by attending to sparse spatial locations and incorporating multi-scale feature
representations. Technically, our LVC model integrates the deformable transformer-
based architecture to construct online caption predictions, taking temporal video
segments of length At as inputs. Given an input video stream V; = {Iy, I, I3, ...},
we first split it in video segments S; of duration At, hence V; = {S1, 59,53, ...}. Note
that our LVC does not have to access the entire video, as required for offline systems
such as [9-11, 33].

These video snippets 5; are the inputs for a deformable transformer model, with the
corresponding encoder and decoder. The following operational scheme is followed from
the introduction of the video segment to the model until the captions are obtained.
First, our model extracts the features for each of the frames in the video segment S;.

For our goal of generating dense captions for the actions and events occurring in
videos, we have chosen to use a pre-trained model for action recognition. In particu-
lar, for our experiments, we used the Temporally-Sensitive Pretraining (TSP) feature
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Fig. 2 LVC adopts a deformable transformer-based architecture to learn the interaction of different
frames of the video, including learnable event queries to capture the significance of the relationship
between frames and events. Two prediction heads run in parallel on the query features, leveraging
mutual benefits between the two tasks and improving their performance together.

extractor [34]. However, our LVC model can be integrated with any action recogni-
tion feature extractor. We then rescale the temporal dimension of the feature maps
obtained to a fixed length T" using interpolation. To effectively use multi-scale features
for forecasting events at different scales, we incorporate L temporal convolutional lay-
ers with a stride of 2 and a kernel size of 3. This approach generates feature sequences
at various resolutions, ranging from 7" to gf These multi-scale features {xl}lel, com-
bined with their positional embeddings, are input into the deformable transformer
encoder, which captures frame-to-frame relationships across multiple scales.

Note that, accurate captioning for videos with multiple simultaneous events relies
heavily on temporal information to segment overlapping actions and on contextual
information to maintain coherence. Our model incorporates these elements through
the proposed deformable transformer-based architecture. Temporal information is
leveraged via multi-scale temporal convolutional layers that enable the extraction of
features at varying time resolutions, capturing the precise start and end of events. Con-
textual relationships are modeled using the deformable attention mechanism, which
dynamically attends to relevant temporal regions, allowing the system to refine pre-
dictions based on localized action patterns. These components work in tandem to
disambiguate concurrent events and generate distinct, temporally aligned captions,
even in complex multi-event scenarios. Moreover, our model integrates the multi-scale



temporal convolutional layers to aggregate features across consecutive frames, enabling
the detection of temporal patterns that extend beyond individual frame boundaries.

Our deformable transformer, as described in [32], is an encoder-decoder frame-
work that utilizes multi-scale deformable attention (MSDeformAttn). For our set of
multi-scale feature maps {xl}lL:1 where x! € REXHXWi 5 query element q;, and a
normalized reference point p, € [0, 1], MSDeformAttn produces a context vector via
a weighted sum of K x L sampling points across the feature maps at L scales:

L K
MSDeformAttn(qy, p;, {x'}7;) = Z Z Ajlka%ﬂk_ ,

Pjik = ¢1(P;) + Apjki.

In this equation, pjr and Aj; denote the position and attention weight of the
k-th sampled key at the [-th scale for the j-th query element, respectively. W repre-
sents the projection matrix for key elements, and ¢; maps the normalized reference
points into the feature map at the [-th level. The sampling offsets Ap,; are relative to
qbl(pj). Both Aj; and Apjy; are determined through linear projection onto the query
element. Overall, in our deformable transformer, self-attention modules in the trans-
former encoder and cross-attention modules in the transformer decoder are replaced
with deformable attention modules.

The decoding network comprises a deformable transformer decoder and three par-
allel components, leveraging the strategy in [10]: a captioning head for generating
captions, a localization head for predicting event boundaries with confidence scores,
and an event counter for estimating the number of events. The decoder’s objective
is to directly query event-level features from the frame features using N learnable
embeddings (referred to as event queries) {q;}/_; and their associated scalar refer-
ence points p;. The reference point p; is obtained through a linear projection followed
by a sigmoid activation applied to q;. These event queries and reference points act as
initial estimates for the events’ features and locations (center points) and are itera-
tively refined at each decoding layer. The refined query features and reference points
are denoted as q; and p;, respectively.

Our localization head produces a box prediction and a binary classification for
each event query. The box prediction task aims to determine the 2D relative offsets
(center and length) of the ground-truth segment with respect to the reference point.
Binary classification generates the foreground confidence for each event query. Both the
box prediction and binary classification are carried out using multi-layer perceptrons.
This process results in a set of tuples [t;1,¢; f,a;oc]évzl that represent the detected
events, with ¢;; and ¢;; the initial and final times, and where oz;-oc is the localization
confidence of the event query q;.

Instead of using a two-stage scheme, our LVC employs enhanced event query repre-
sentations in parallel localization and captioning heads, allowing these two subtasks to
be closely related. LVC directly produces a set of events with an appropriate size with-
out relying on heuristic techniques to eliminate redundancy. Within our deformable
transformer (see Figure 2), Event Queries are produced and introduced into the



decoder. Each of these queries will result in a prediction for a caption. For all experi-
ments, we use a total of 10 queries, although in the ablation studies we evaluate the
impact of this parameter.

Our captioning head feeds q; into a vanilla LSTM at each timestamp. The word
wjy is predicted by a fully connected layer followed by a softmax activation over the
hidden state h;; of the LSTM. Note that this LSTM operates only within the video
segment of duration At that our LVC model is analyzing.

The event counter head predicts the number of events using a max-pooling layer
and a fully connected layer with softmax activation, producing a fixed-size vector riep,
where each value refers to the possibility of a specific number. The predicted event
number is obtained by argmax(rie,). Top Nget events are selected based on accurate
boundaries and captions.

Confidence for each event query is calculated by combining two components: loca-
tion confidence and a modulated caption confidence. The location confidence evaluates
the spatial accuracy of the event, while the modulated caption confidence incorpo-
rates adjustments for variability in sentence length. During training, our LVC model
generates a set of IV predicted events, each comprising a spatial location and an asso-
ciated caption. To associate these predictions with the ground truth, the Hungarian
algorithm is employed, solving a bipartite matching problem that optimizes a com-
prehensive cost function. This cost function integrates two primary components: the
Generalized Intersection over Union (GIoU) loss [35] for spatial alignment and a focal
loss [36] for classification accuracy.

Our total training loss, Liotal, is computed as a weighted combination of several
loss terms: Etotal = )\GIOUcGIOU +)\cls£cls +)\countﬁcount +>\cap£cap7 where £GIOU> £cls;
Lecount; and Leap represent the GIoU loss, classification loss (i.e. focal loss), counting
loss, and caption loss, respectively. Our counting loss is the cross-entropy loss between
the estimated count distribution and the one in the ground-truth. For the captioning
loss we use the cross-entropy computed between the word probability estimated by
our model and the ground-truth normalized by the length of the caption. The hyper-
parameters AGiou, Acls, Acount, and A¢ap control the relative contributions of each loss
term. For our experiments we use Agrou = 2, and Acis = Acount = Acap = 1.

While offline models for dense video captioning can access all available information
by analyzing the entire video before generating the captions, our LVC model only has
access to the information available in the video segment of duration A¢. This limitation
can hinder the quality of the subtitles because a short video segment might not provide
enough context. In our LVC model, captions are generated in an online manner based
exclusively on the video data available up to the current time step. Once a caption is
produced for a given video segment, it remains immutable and is not revised as new
frames are processed. This design choice enforces the causality constraints essential
to the LVC task, ensuring that each caption accurately reflects the observed content
at the moment of generation without relying on future information. This approach
distinctly differentiates LVC from traditional offline methods, which have access to
the entire video sequence and can even refine captions retrospectively.

Therefore, to improve the quality of the captions, we have included a temporal
filtering for the caption consolidation, as shown in Figure 3. First, our deformable
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transformer uses a query mechanism comprising N queries per video segment of dura-
tion At. Subsequently, our filtering module accepts the predictions generated by these
event queries, {qj}é\’:l, as input. Each query produces a predicted caption c;, an
associated temporal segment [t;1,%;¢], and a confidence score ;, resulting in a set
of tuples {(t;1,t;f,¢cj, aj)};»vzl. Considering the temporal overlap between the predic-
tions, the consolidation module orchestrates a voting mechanism to determine the final
captions for the given video segment. Specifically, the temporal filtering we propose
consists in a module that evaluates the frequency of occurrence of each overlapped
predicted caption among the set of predictions. Let f(c) represent this frequency for
a particular caption ¢, and w(c) its maximum score. The ultimate caption ¢, for
the set of temporally overlapped predictions is selected as the one with the highest
frequency: ¢, = argmaxc.cyc, .. ey} f(c). Being the final tuple for the prediction as
follows: {(ts1,tsr, cx, w(ci))}

T A
2 'aman is seen holding a stick and speaking to the camera.’ /L{ 0445 | Consolidation
3 *aman is seen holding a stick and speaking to the camera.’ /L‘ e l Caption: ‘aman is seen holding a stick and
e : speaking to the camera.’
o ®
. 'awoman is shown inaroom. _“——| 0418 |
queries > Proposal score: | 0.445 |
5 *aman is seen holding a stick and speaking to the camera.’ —{ 0438 |
Temporal segment (0,0.8]'s
6 ‘aman s seen holding a stick and speaking to the camera. ~——| 0415 |
.
.
£ . J

Fig. 3 Example of caption consolidation for a video segment.

3.3 Novel Evaluation Metric for Live Video Captioning: the
Live Score

Dense video captioning models, by operating in offline mode, have traditionally been
evaluated using offline metrics. The new LVC paradigm we propose necessitates the
development of a new evaluation metric with an online nature. We begin by describing
the typical offline evaluation scheme and then highlight its main limitations for LVC
systems, thereby introducing the properties that an online evaluation metric must
possess. Next, we introduce the formulation associated with the new proposed metric,
the Live Score, including all of its variants.

3.3.1 Online evaluation metric properties

The main characteristics of traditional offline dense video captioning metrics are as
follows. All the information from the video annotations is introduced at once in the
metrics. Then, the scorer rates the entire input video regardless of its duration. This
scenario is quite different from that of LVC, where dense caption predictions with their
associated timestamps arrive in temporal blocks, whose duration is less than that of the
full video being processed. Moreover, the offline metrics cast a score that corresponds
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to the average score for a full video. This fact does not allow us to observe the temporal
evolution in the performance of the models, and this property is interesting for LVC. In
other words, we need an online nature metric that evolves with the video and reflects
the online accuracy of LVC systems.

Therefore, the characteristics that an online metric for LVC must fulfill are as
follows:

® Video stream-based scoring: Ability to obtain scores from a video stream,
therefore no access to a whole video is needed.

® Causality compliance: The metric should not have access to future information,
only to what is being processed at the moment and what has already been processed.

® Memory-aware: Implementation of a record of the scores obtained in the video.
This will be used to calculate subsequent results and allow for an evolution over
time.

3.3.2 The Live Score

For the new paradigm of LVC, we propose a purely online metric: the Live Score
(LS). In short, it is an adaptation of the various scores used in offline metrics, but
tailored to process video streams online, causally, and considering the history of the
video, as we have specified in the previous section. Evaluating captioning quality in
live video scenarios requires continuous assessment, as the accuracy of captions must
be ensured at each stage of video playback. We propose an experimental evaluation
guided this novel LS metric, which tracks the temporal evolution of caption accuracy
as the video progresses. The LS metric allows us to evaluate caption performance at
each moment, taking into account both the immediate accuracy and the cumulative
quality of predictions. This continuous evaluation is crucial in live scenarios, where
the model must maintain high performance throughout the video’s duration, ensuring
that captions remain relevant and precise as events unfold.

We begin with the necessary mathematical formulation to define the LS. Let an
LVC model aim to produce a series of caption predictions by analyzing an input video
stream every At seconds. Note that At will be the only configurable parameter of the
new metric LS. We define C; as the set of captions generated by the model LVC when
presented with a video V;:

LVC(Atv ‘/l) = Cl = {[tlivtlfa C1, al]» [t2i7t2fa C2, a2]7 vy
[tni7tnfacnaan]} ) (1)

where t,; and t,; are the start and end times of each timestamp, respectively, ¢,
contains the predictions for the captions, and «,, encodes the confidence assigned by
the LVC model to each caption.

The LS metric will process the data in C; online, providing a score 7 for each
timestamp ', with a resolution of At seconds. We propose to combine our LS metric
with any of the traditional scorers for video captioning (see Figure 4). This scorer
is now evaluated continuously, and our LS metric allows for the observation of its
evolution, instantaneously. The scorers are responsible for comparing the similarity
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between the predicted and annotated captions. The ones we have integrated into our
LS metric and that have been used in experiments are as follows:

e METEOR [37]: It is an automatic translation quality evaluation metric that
calculates word, phrase, and synonym similarity scores.

e Bleu4 [38]: Automatic evaluation metric used in text generation and machine trans-
lation. It emphasizes the accuracy of matching four-word n-grams and evaluates the
similarity between the generated output and human references using the count of
matching n-grams.

¢ Rouge-L [39]: Automatic evaluation metric primarily used in automatic text sum-
marization. The generated summary and the reference summary are compared using
word count and summary length.

To reflect a continuous temporal evolution, when we have the score calculated at
t', we compute the mean with all previous scores, so that the LS metric is formulated

as follows:
K
>,

LS(t', LVC(At, V;)) = % : (2)

where tln = n - At, the numerator corresponds to the sum of all scores calculated up
to the current moment ', and K = i—/t.

As it is shown in Figure 4, we can have multiple ground-truth captions associated
with the video segment we are processing. Remember we are dealing with the dense
video captioning problem, hence this situation is possible. Our metric will produce a
score between the predictions and each annotated caption, resulting the final score
vy as the average of all generated scores for that segment. We show in Figure 4 a
graphical example, where the LS metric is used to process a video V; segmented into
fragments with length At, each one containing m associated captions.

The proposed LS metric has an online nature, meeting all the requirements detailed
in Section 3.3.1. However, it does not take into account the influence of false posi-
tives, i.e., predictions of captions that do not appear in the annotations available in
the database. In other words, the proposed metric does not include any calibration
mechanism with respect to false positives. In a realistic scenario for the LVC problem,
such as generating captions for a live video stream from a surveillance camera, it is
highly likely that there are large portions of the video where no action is occurring.
Thus, in an LVC model applied to a video surveillance system, we must avoid at all
costs the model generating captions for events that have not occurred. Indeed, false-
positive captions pose a significant challenge in live video captioning where they can
disrupt the user experience by generating frequent, inaccurate descriptions. An LVC
system will be accurate if it provides accurate captions, but also if it only provides
captions when something relevant is happening in the video.

To calibrate our metric and make it sensitive to false positives, we propose inte-
grating a penalty for false positives into the LS. This new version of the metric is
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Fig. 4 The LS metric. It allows for an online and continuous evaluation of a video stream, analyzed
every At seconds. Our metric allows for the integration of any scorer (e.g. METEOR, Bleu4 or Rouge-
L) in the online or live evaluation.

called weighted-LS (wLS), and is formulated as follows:

K
Z Ve,
wLS(t', LVC(At, V;)) = % e P (3)
K
> folty)
B="=f— @

where we have added the correction factor 8, dependent on fp(t],), which is the number
false positives corresponding to the video segment associated to t,. By incorporating
this weighted metric, our experimental evaluation pipeline enhances the reliability of
live captioning systems, ensuring a more seamless and coherent user experience.

The two new proposed metrics, LS and its calibrated version wLS, allow for the
online and continuous evaluation of what happens in a video up to time ¢’, considering
the entire history of the video from ¢ = 0. It may happen that the evaluation process
starts with predictions that have very low scores and gradually improve over time,
or vice versa. In such scenarios, since the metric is calculated based on all previous
scores obtained by the system from ¢t = 0, it always considers the entire temporal
timeline, and the metric may fail to reflect the system’s most recent behavior. To
address this issue, we propose a version for both LS and wLS that considers only a
fixed temporal history window for computing the performance of the LVC system at
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Fig. 5 Operation of the online metric with fixed temporal window history. We observe how that
temporal window moves along the video timeline. The window, with size w = 5, encompasses the
scores that will be considered to compute the score associated with the current instant. The first
two slots have been discarded. The diagram has been simplified for ease of understanding, but the
calculation of scores for each At is the same as in the previous scenarios.

time ¢/, covering only the interval [t' — wAt,t']. Here, w defines the size of this fixed
temporal window used to compute the metrics LS and wLS. By updating the metric
considering only the fixed temporal history window, we allow it to evolve, reflecting
the current performance of the LVC model. In Figure 5, we illustrate the calculation
process for a temporal window size of w = 5.

Incorporating the fixed temporal history window, the formulations of the previously
described metrics are as follows:

K

>,
WLS(, LVC/(At, V;)) = ”:ma"“’i; v (5)

K

Z Ve,

hwLS(t, LVC(At, V;)) = "=mextbivlze) —p (6)

K

> fo(t)

n=max(1,K+1—w)

f= - . (™)

4 Experimental Evaluation

In this section, we provide details of the experimental evaluation designed for the
proposed novel LVC problem.
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We start in Section 4.1 with a description of the experimental setup, where we
outline the database used and the adaptations made to it for the evaluation of the live
models. Subsequently, in Sections 4.2-4.6, we include both qualitative and quantitative
results of all our experiments. The questions we want to address with the proposed
experimental evaluation are as follows:

1. Are offline experimental evaluation environments adequate for LVC models?

2. Are the proposed new metrics suitable for the LVC problem, and do they allow to
judge the temporal evolution of LVC systems?

3. What is the performance of the proposed model for LVC? With respect to the state
of the art in offline models, how does the proposed LVC approach perform?

4.1 Experimental setup

We have used for our experimental evaluation the ActivityNet Captions [13] dataset.
This database is actually a subset of data from ActivityNet [40]. Specifically, Activi-
tyNet Captions consists of a set of 20,000 videos totaling 849 hours of video with a total
of 100,000 descriptions, each with its start and end timestamp. On average, each anno-
tated video contains 3.65 localized phrases, with each phrase averaging 13.48 words.
The videos were generated at a rate of 30 frames per second. For our experiments we
have chosen the validation set, which contains 4,926 videos.

The different At values used in the experiments were (24,48, 72,96,120,150) in
frame numbers. We justify this choice of values for At because all of them represent a
reasonable temporal length for online applications. If the values were greater, the delay
between predictions would be too high, making them unsuitable for consideration as
live models.

4.2 Evaluating LVC models with off-line metrics

Are offline experimental evaluation metrics suitable for the novel LVC problem? This is
the question we want to specifically address in this section. We set up an experimental
evaluation scenario in which we use the official offline metrics provided in the Activ-
ityNet Challenge 2018 [41], on the online predictions generated by our LVC system.
For localization performance, the average precision and average recall across intersec-
tion over union at different thresholds are used. For dense captioning performance,
the official evaluation tool provided by ActivityNet Challenge 2018 is followed, which
calculates the average precision measured by BLEU4, METEOR, and ROUGE_L scor-
ers, of the matched pairs between generated captions and the ground truth across
intersection over union thresholds of 0.3, 0.5, 0.7 and 0.9.

In Table 2, we first present the results in terms of dense captioning accuracy. We
provide a detailed comparison between the results of our online LVC model and those
offered by the offline models PDVC [10] and Vid2Seq [9], that are the state of the art
for the dense video captioning problem.

Analyzing these results, we can draw the following conclusions. The first one is that
offline metrics favor offline models. Our live system achieves low performance in some
metrics. The reason is clear: these metrics filter the captions generated by the models
based on intersection-over-union thresholds, as we have seen, and the predictions of
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Model Live At Features | Bleu4 METEOR ROUGE_L

3D 1.65 7.50 i
PDVC [10] X TSN 1.78 7.96 i
TSP 2.17 9.03 -
3D 1.51 7.11 :
PDVC.light [10] X TSN 1.66 7.97 -
TSP 1.77 8.55 -
Vid2Seq [9] X CLIP - 8.5 -
24 0.13 0.14 0.15
48 0.47 0.45 0.51
72 0.85 0.75 0.91
LVC (Ours) v 96 TSP 1.21 1.03 1.29
120 1.55 1.27 1.63
150 2.01 1.56 2.08

Table 2 Experimental comparison in terms of accuracy of the captions generated by offline models
and our online model LVC using traditional offline metrics for the ActivityNet Captions dataset,
using the validation set of videos.

our LVC model are too short in temporal duration (At is the value), so many of them
do not survive this filtering and are naturally discarded by the offline metrics. The
second conclusion, related to the first one, is that offline metrics tend to improve as
we increase the parameter At in our LVC model. The metrics were designed to work
in offline scenarios where models can and should see the entire video first, and then
generate all caption predictions. This favors the generation of captions of much longer
duration than those that can be generated by our LVC model (with a At limit). In
fact, the offline dense captions can even occupy large temporal portions of the video.

We can also compare offline and live models in terms of the accuracy of tempo-
ral localization of the captions, again using traditional offline metrics: precision and
recall. In Table 3, we present this detailed analysis, and we can observe that the
results of event localization obtained for our predictions using these offline metrics are
not satisfactory. Again, the metrics improve as At increases in our LVC model. The
explanation is similar to what we have provided for the previous metrics: our caption
predictions are associated with video segments of duration A¢, which causes them not
to meet the intersection-over-union criteria employed by the offline metrics. Observe
the low performance when the threshold of 0.9 is used for the intersection-over-union.

4.3 Analysis using modified offline annotations

One might argue that offline metrics could still be applicable in an online scenario if
the video annotations are adjusted to align with the duration used by LVC models.
We have also performed this analysis for completeness, although we anticipate that
this approach has significant drawbacks.

As an alternative to designing an online metric, one can attempt to use offline
metrics but on a dataset where annotations have been modified to achieve an online
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| Recall Precision

Model Live
| 03 0.5 0.7 0.9 avg | 03 0.5 0.7 0.9 avg
MFT [42] X 46.18  29.76 1554 577 2431 | 86.34  68.79  38.30 1219 5141
SDVC [43] X 93.41 76.40 4240 1010 5558 | 96.71  77.73 44.84 10.99  57.57
PDVCllight [10] X 88.78 7174 45.70 17.45 55.92 | 9683  78.01  41.05 14.69  57.65
PDVC [10] X 89.47 7191  44.63  15.67 5542 | 97.16 78.09 42.68 14.40 58.07
Vid2Seq [9] X - - - - 52.7 - - - - 53.9
At
24 | 760 272 089 016 = 2.84 1.81 045 021  0.06 0.63
48 | 1757 761 2.55 047  7.05 5.88 198 078 015 2.20
IVC - (ours) v 72 | 2540 1230 461 092 1081 | 10.14  3.91 179 042 4.07
96 | 31.76 1645  6.42 131 1398 | 1421 610 274  0.63 5.92
120 | 3670 19.34  7.67 174 1636 | 1817  7.94 358  0.82 7.63
150 | 42.50 22.87 9.67  2.25 19.32 | 23.11 10.24 4.77 123  9.84

Table 3 Caption localization for the validation video set of ActivityNet Captions, using traditional
offline metrics. Comparison with the state of the art offline models.

‘ Model At ‘ Recall Precision

\ | 03 05 07 09 ag | 03 05 07 09 avg

24 7.60 2.72 0.89 0.16 2.84 1.81 0.45 0.21 0.06 0.63
48 17.57 7.61 2.55 0.47 7.05 5.88 1.98 0.78 0.15 2.20
Original VG 72 25.40 12.30 4.61 0.92 10.81 10.14 3.91 1.79 0.42 4.07
Annotations 96 31.76  16.45 6.42 1.31 13.98 14.21 6.10 2.74 0.63 5.92
120 | 36.70 19.34 7.67 1.74 16.36 18.17 7.94 3.58 0.82 7.63

150 | 42.50 22.87  9.67 2.25 19.32 | 23.11 10.24  4.77 1.23 9.84

24 90.97 90.08 89.24 88.32 90.16 | 97.63 97.32 96.85 96.23 97.18
48 90.36 88.73 87.10 85.14 88775 | 97.79 97.33 96.24 94.66 96.82
Modified IVC 72 89.85 87.46 85.05 82.30 87.46 | 97.88 97.22 9546 93.18 96.39
Annotations 96 89.33 86.25 83.28 79.74 86.29 | 97.96 97.15 94.86 91.74 96.00
120 | 88.88 85.02 81.48 77.43 85.16 | 97.99 97.01 94.06 90.42 95.57

150 | 88.28 83.74 79.58 74.72 83.89 | 97.98 96.84 93.42 88.85 95.11

Table 4 Comparison of results using original annotations or annotations adapted to live models, in
terms of caption localization.

appearance. In other words, it involves taking the temporal annotations for each cap-
tion and dividing them into small temporal segments that match the temporal window
used by live video captioning models, i.e., At.

We have automated a process to modify the annotations provided in the validation
set of the ActivityNet Captions database. Once the modified annotations are generated,
traditional metrics for offline video captioning are employed, and the results are as
follows. In Table 4, we present the results in terms of caption localization in this new
scenario and compare it with the performance obtained with the original annotations.
Note that by splitting the provided annotations, we ensure that the predictions of our
live model are not filtered out because they do not meet the intersection over union
criterion.

It is interesting to observe how adapting the annotations to the live solutions results
in a considerable improvement in localization metrics. The best average precision
jumps from 9.84% to 97.18%, while the best average recall reaches 90.16% from only
19.32%.

We also report the performance of our model for the three different metrics used to
evaluate the precision of the captions, see Table 5. Again, we compare the performance
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Scenario At ‘ Bleu4 METEOR ROUGE_L

24 0.13 0.14 0.15
48 0.47 0.45 0.51
Original 72 0.85 0.75 0.91
Annotations 96 1.21 1.03 1.29
120 1.55 1.27 1.63
150 2.01 1.56 2.08
24 18.18 8.71 18.27
48 17.79 8.51 17.89
Modified 72 17.34 8.28 17.51
Annotations 96 17.05 8.12 17.23
120 16.86 8.02 17.05
150 16.50 7.83 16.74

Table 5 Comparison between results using original
annotations and annotations adapted to the live scenario
for ActivityNet Captions, employing LVC as the model.

when the original annotations and the adapted ones are used. We can observe that in
this experiment the trend is that, the lower At is, the higher the results are.

In conclusion, adapting annotations to how live models work has a positive impact
on their evaluation. However, the proposed adaptation has the drawback that the
annotation must be dynamically adjusted to the temporal window At being used, to
then employ traditional offline metrics. Furthermore, it is not an evaluation strategy
that naturally provides a metric that allows us to observe the temporal evolution of
the model. In other words, these offline metrics do not evolve over time with the video,
a fundamental aspect for the novel LVC problem. All these drawbacks are clearly
addressed by the new metrics proposed in this work.

We conclude that the analysis performed in this section is crucial to justify the need
for a new evaluation metric for live models, so that we can evaluate them efficiently
and fairly, as we shown in the following section.

4.4 Evaluating LVC models with the novel Live Score

One of the main motivations of our work has been to design a new online evaluation
metric for live video captioning models, i.e., the LiveScore (LS) (see Section 3.3.2). In
this section, we detail all the experimental evaluations carried out using it. Note that
we provide a detailed experimental analysis considering the four alternatives proposed
for the LS metric:

e Normal operation mode (Live Score - LS).

e Mode with a correction factor (Weighted Live Score - wLS).

¢ Mode with history in a memory window (LS with History Window - hLS).

e Combined mode with correction factor and history in a memory window ( Weighted
LS with History Window - whLS).

In Table 6, we show the mean obtained by the novel LS when integrated with the
different scorers Bleu4, METEOR, and ROUGE_L. Based on the results obtained, we
can draw the following conclusions. First, it is observed that the metrics increase as
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LVC - At
24 48 72 96 120 150

Scorer ‘
Bleu4 18.13 19.00 19.29 19.38 19.45 19.25

LS METEOR 8.98 9.32 9.37 9.38 9.40 9.25

ROUGE.LL | 19.84 20.81 21.14 21.21 21.29 21.18
Bleu4 17.12  18.19 18.61 18.80 18.96 18.84
wLS METEOR 8.45 8.91 9.03 9.09 9.16 9.05
ROUGE.L | 1871 19.90 20.36 20.55 20.74 20.72

Table 6 Evaluation for the LVC model using the new online metric.
LS: Live Score. wLS: Weighted LS. We evaluate the LVC model for
different values of the parameter At, as well as integrating different
scorers (Bleu4, METEOR, and ROUGE_L).

the parameter At increases. This makes sense, as the larger the temporal window, the
LVC model is able to see more portions of the video and offer a better description in
the caption. However, values higher than At = 120 do not seem to offer a significant
improvement. Second, the results reported by the online metric are considerably higher
than those obtained by the offline metrics. This becomes clear when comparing the
results between Table 2 and Table 6, where the results with the offline and online
metrics are shown, respectively. For example, for At = 120, the Bleud scorer goes
from 1.55 to 19.45 for the LS version, or to 18.96 for the wLS version. The increase
experienced for the rest of the scorers is somewhat similar. This demonstrates the
suitability of the new metric for the online scenario. Third, when comparing between
the LS and wLS versions, we observe how LS offers higher results than the wLS
version. This is because false positives that are generated are not considered by LS,
but only by the wLS version, thus offering lower scores, but more adjusted to the
actual performance of the LVC model. Fourth, given the results offered by the different
scorers and the LS and wLS metrics, the LVC model achieves the best results for
At = 120, with consensus among all scorers.

Finally, we include the analysis of the temporal evolution of the performance of
our LVC model using all our novel evaluation metrics. This analysis demonstrates that
the new metrics enable us to generate graphs that track the temporal evolution of
different scores. Such tracking is crucial for LVC models and cannot be achieved with
traditional offline metrics. Note that we include the hLLS and whLS variations of the
metric in this analysis, which are specifically designed to continuously visualize the
accuracy of LVC systems.

In Figures 6 to 11, we show the results obtained for 3 videos and all the values of
the parameter At used. Analyzing these graphs, we can draw the following conclusions.
Firstly, the granularity of the metrics naturally increases as we decrease the parameter
At. This allows us to control the speed at which captions are generated and the speed
at which their accuracy is evaluated. Secondly, we have also included LS and wLS
metrics without the temporal window option in these graphs. We can observe how for
all videos and all scorers, the wLS version is always more conservative, reporting lower
or equal scores, as it applies a penalty based on false positives. The same behavior is
observed when comparing hLLS and whLS, with the latter offering the most conservative
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scores. It is also noticeable that all versions start by reporting exactly the same values,
beginning to diverge when the history window comes into play. As the third conclusion,
perhaps the most important one, these plots show how the inclusion of a history
window in our metric allows the model to exhibit its recovery in terms of caption
generation accuracy. It no longer considers the entire past, only the recent local past, so
that the scorers can increase or recover as the LVC model chains more and more correct
caption predictions. In fact, observing a downward trend in the hLS and whLS metrics
is an important indicator of how poorly the caption generator system is performing.
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Fig. 6 Temporal evolution of the designed online metrics for the LVC model with At = 24. Results
are shown for 3 videos from ActivityNet Captions.

4.4.1 Discussion

While novel LS metric provides a robust online evaluation framework for LVC sys-
tems, it is not used directly during their training, as it can be observed in previous
experiments. LS calculates a cumulative score over time, capturing the real-time and
historical accuracy of predictions, which contrasts with the frame-by-frame optimiza-
tion process used during training of our LVC model. Training objectives typically rely
on instantaneous feedback, that are easier to optimize with stochastic gradient descent.
Exploring methods to incorporate LS principles into a training objective remains an
intriguing avenue for future research, potentially bridging the gap between evaluation
and model optimization.

Another interesting aspect to analyze in the context of LVC is the quality of the
annotations in the training datasets. The robustness of video captioning models heavily
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Fig. 7 Temporal evolution of the designed online metrics for the LVC model with At = 48. Results
are shown for 3 videos from ActivityNet Captions.
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Fig. 8 Temporal evolution of the designed online metrics for the LVC model with At = 72. Results
are shown for 6 videos from ActivityNet Captions.

depends on the quality and diversity of annotations in the training datasets. High-
quality annotations ensure accurate temporal boundaries and rich semantic details,
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Fig. 9 Temporal evolution of the designed online metrics for the LVC model with At = 96. Results
are shown for 3 videos from ActivityNet Captions.
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Fig. 10 Temporal evolution of the designed online metrics for the LVC model with At = 120. Results
are shown for 3 videos from ActivityNet Captions.

enabling the model to learn fine-grained associations between actions and descriptions.
Conversely, noisy or inconsistent annotations can introduce ambiguity, reducing the
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Fig. 11 Temporal evolution of the designed online metrics for the LVC model with At = 150. Results
are shown for 3 videos from ActivityNet Captions.

model’s ability to capture temporal precision and action differentiation. Similarly, a
lack of variety in annotated events or scenarios limits the model’s capacity to generalize
to unseen contexts, particularly in real-world applications with diverse and dynamic
content. These factors are especially critical in LVC, where models must operate with
partial observations and strict timing constraints. Addressing these limitations requires
the development of datasets with comprehensive, high-quality annotations tailored to
the online scenario.

4.4.2 Ablation Studies

In this section, we show the impact of the parameters of our LVC model on the quality
of the dense captions. Specifically, we analyze the influence of the following components
of our model: the use of a deformable transformer vs. a standard transformer; the
number of queries; and the event counter head. For these studies we have used the
METEOR metric in conjunction with our LS. Figure 12 shows the results obtained.
As can be observed, the use of a deformable transformer significantly improves the
results. Regarding the number of queries used in our transformer, the impact is not as
substantial, with ¢ = 10 being a fairly efficient compromise. Lastly, it is notable that
not using the event counter head leads to a significant drop in the model’s performance.

In summary, regarding the architecture used in the proposed LVC model, the use
of a deformable transformer is confirmed as the option that provides the best results.
The influence of the deformable transformer’s specific parameters, such as the number
of queries, does not seem to significantly affect the quality of the captions. We believe
this is because our model, instead of processing the entire video, works with short
segments of the video, due to the online nature of the problem posed by LVC. Finally,
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the use of the three simultaneous heads—one for captions, another for localization,
and another for considering the estimation of the number of events—appears to deliver
the best results.

Ablation studies

10

Dense Captioning Performance

o

Vanilla DETR q=5 q=10 q=30 q=100 No counter

Fig. 12 We show the impact of the different parameters and components of our LVC model on the
quality of the dense captions when using a standard transformer (Vanilla) vs. a DETR, different values
for ¢, and when the event counter head is not activated. We report METEOR with the LS metric.

4.5 Qualitative analysis

In this section, we present some qualitative results of our LVC system. Specifically, we
show two examples corresponding to two videos from the validation set: one demon-
strating a good result and the other a poor result. We used At = 150, the maximum
value we experimented with. This makes it easier to identify points in the graph where
there is a change in slope according to the proposed metrics. We demonstrate the
operation of the metric using the Live Score strategy, integrating the Bleu4 metric.
In both examples, we highlight several points on the graph where notable changes in
slope occur. A pronounced change in slope indicates a significant improvement or dete-
rioration in the score compared to previous points. These marked points of interest
represent where the predictions either align more closely or diverge from the ground
truth. Red shading signifies a greater discrepancy between the prediction and the
ground truth, while green shading indicates a closer match.

Figure 13 contains the good case. We can observe that it represents a scenario
where the predictions closely resemble the ground-truth. The scores obtained by the
metric are quite good, in fact. Figure 14 represents a case where the predictions differ
significantly from the ground-truth and the scores are low.

4.6 Demo

In this section, we showcase the system in operation with a live video stream and
highlight its performance. We have implemented a demo that allows for the direct
processing of a video stream from a camera using our LVC model.
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| "Prediction: "a man is seen standing in a field and leads into a man holding a stick.” |
L Ground-truth: "A man is seen speaking to the camera while holding a jump rope in the middle of a park." ‘

\ Prediction: "a man is seen standing on a rope holding a rope and leads into a man holding a rope." ‘

| Ground-truth: "Aman is seen speaking to the camera while holding a jump rope in the middle of a park.” |

| Prediction: *a man is seen standing in a room holding a large stick and leads into a large group of people. |
| Ground-truth: " The man then demonstrates several different jumps while holding the rope and stil speaking to the camera.” |

| Prediction: "a man is seen speaking to the camera and leads into @ man speaking to the camera."

| Ground-truth: * The man then demonstrates several different jumps while holding the rope and stil speaking to the camera.” |

Fig. 13 Good Quality Example: It is observed that the predictions of the LVC system resemble
those that are annotated.

To achieve processing speed and provide captions with good quality, we have had
to make the following interventions in the LVC model. The demonstrator works by
directly accessing a video stream from a webcam. Once launched, the model will begin
generating captions on the video stream immediately and continuously, displaying
them on the screen. We have implemented a multiprocessing solution with two threads
running simultaneously. The multiprocessing implementation is essential to ensure
that while a caption is being generated, frames continue to be captured to avoid losing
information. The first thread is responsible for capturing frames and displaying the
images and captions on the screen. The second thread processes sets of frames to
produce the captions using our LVC model. This caption generation thread can be
parameterized to define both the parameter At, i.e., the length of the minimum video
segment to be analyzed, and a memory parameter M that is maximum number of
segments with length At that we will keep in memory to produce captions in the
demonstrator. With this memory, we ensure that the dense caption prediction LVC
module can access more context, a larger portion of the video, without losing its
essence as a live system, and generate more accurate captions. Figure 15 provides a
graphical description of the implementation made for the demonstrator.

As for processing speed, in Table 7, we report the average frames per second that
our implementation is capable of processing and the average time it takes to generate
a caption prediction by our LVC implementation. The camera we are working with
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‘ "Prediction: "a man is seen speaking to the camera and leads into several clips of people playing the game."”

Ground-truth: " An individual tries to stop a charging buII.'J

| Prediction: "a man is seen standing in a room with a man holding a stick."
[ Ground-truth: " An individual tries to stop a charging bullv'J

Prediction: "a man is seen standing in a room with a man in a blue shirt is standing in front of a large group of people.”

Ground-truth: " An individual tries to stop a charging bull." J
\ Prediction: "a man is seen standing in a room and leads into a man walking down."
[ Ground-truth: " An individual tries to stop a charging bull." J

Fig. 14 Bad Quality Example: The predictions do not resemble the annotations in the video,
and the proposed metric reflects the system’s failed behavior in an online mode.

provides a frame rate of 30 frames per second, so we can calculate the optimal length
of the video segments to be used by the LVC system. We define [ as the length in
frames of the input video clip: I = 2.38 - 30 = 71 If the video segments we introduce
to the model have a duration of 71 frames, we will ensure that when the processing of
one clip ends, the next one is introduced into the LCV model. This way, no frames are
discarded. All these tests for the demo were performed on a laptop running Ubuntu
18.04 operating system, equipped with an Intel Core i7 processor, and an integrated
NVIDIA Quadro RTX 5000 MaxQ graphics card. Note that higher speed can be
achieved if a more powerful GPU is used.

| FPS interfaz  Time of prediction (s)
Average ‘ 18.93 2.38

Table 7 Number of frames per second (FPS) and average prediction time reported by our LVC
demo system.

For the LVC problem, it is crucial to assess the performance of our model on
devices with limited computational capacity, such as those used in embedded systems,
robotics, IoT, or Edge Computing. To this end, we evaluated our LVC model on an
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Fig. 15 Multiprocessing demonstration scheme implemented. Our solution is capable of continuously
displaying and producing captions. The system depicted in this figure employs a memory parameter
M = 3, so that the latest caption generation only receives the 2 previous segments and the current
one.

NVIDIA Jetson Xavier-NX board, a platform equipped with 384-core NVIDIA Volta
GPUs and 48 Tensor Cores, capable of operating with a power consumption as low as
20W. This setup allowed us to analyze the model’s suitability for resource-constrained
environments. To conduct these performance tests, we adapted the developed demo to
operate efficiently on the NVIDIA Jetson Xavier-NX. First, we compiled the necessary
libraries specifically for optimal use of the ARM64 architecture and the integrated
GPU of the Jetson Xavier-NX board. After embedding the application into the plat-
form, we analyzed the system’s performance, adjusting the parameter At as shown in
Table 8. One key observation is that our implementation achieves a frame rate exceed-
ing 0.8 FPS, which could be sufficient for many applications requiring an embedded
LVC system. Notably, the maximum At value that the Jetson platform can process is
70 frames. It is worth highlighting that the processing of TSP features represents the
main bottleneck. In percentage terms, the time spent generating these features con-
sistently exceeds the time required for generating dense captions and filtering when
At > 16 frames.

At | FPS Time of features (sec.) Time of LVC (sec.)

16 0.87 0.39 0.75
48 0.51 1.15 0.75
70 0.11 7.6 2.4

Table 8 Performance evaluation of our LVC model on an NVIDIA Jetson Xavier-NX board. We
report: number of frames per second (FPS), and average time for the compuation of features and
captions.
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5 Conclusions

Live video captioning is a novel and challenging problem that has not been deeply
investigated in the scientific literature. As we have shown, generating dense captions
for live video streams is a much harder problem than one might conclude from results
reported in previous works under more constrained settings, e.g., offline dense video
captioning models. In fact, traditional evaluation metrics need to be updated to novel
online versions that allow us to judge the actual live performance of the LVC models.
In this work, we have formalized the problem of LVC for the first time, proposed new
metrics tailored to it. We introduced an LVC model capable of integrating transformer-
based attention mechanisms with a caption filtering module for video streams received
as input. Results of our model as well as an evaluation kit with the novel metrics
integrated are made publicly available to encourage further research on LVC on real-
istic data: https://github.com/gramuah/lvc. We hope to encourage more researchers
to look into the challenging yet very practical task of LVC. This work enhances our
understanding of LVC and paves the way for live video understanding and accessibility
applications in dynamic environments.

As future work, we consider the following options. The first would be to allow our
LVC model to improve the predictions of the captions, using a memory mechanism,
where the model takes into account past predictions. Technically, for example, recur-
rent networks could be incorporated into the model. A second line of improvement
would consist of incorporating explainability techniques to improve the interpretabil-
ity of our LVC model. Inspired by advancements in Explainable Artificial Intelligence
(XAI) [44], such as attention visualization and feature importance analysis, we aim to
provide insights into the model’s decision-making process. These methods could help
bridge the gap between black-box models and transparent systems, enhancing trust
and usability in applications requiring streaming video analysis. Finally, the future
capabilities LVC systems are closely tied to advancements in sensor technology and
video analysis techniques. Improvements in camera sensors, such as higher frame rates,
and low-light performance, can provide richer data for more accurate caption gener-
ation. Additionally, emerging video analysis techniques, including multimodal feature
fusion and lightweight neural architectures, may enhance the efficiency and robustness
of LVC systems, particularly for real-time applications. While these developments are
beyond the scope of this study, they represent promising directions for expanding the
applicability and effectiveness of LVC models in diverse scenarios, including robotics,
surveillance, and assistive technologies.
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