

**Universidad
de Alcalá**

Reinforcement Learning for Visual Semantic Navigation

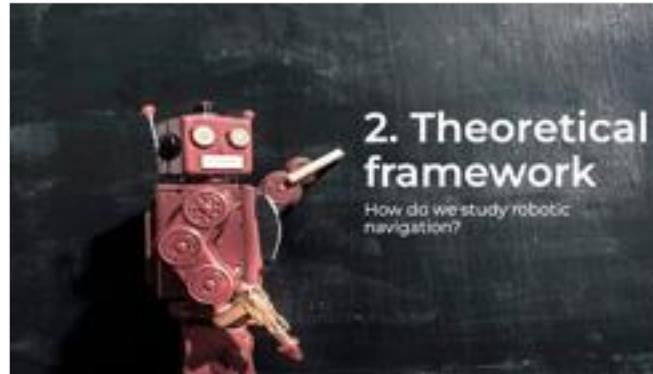
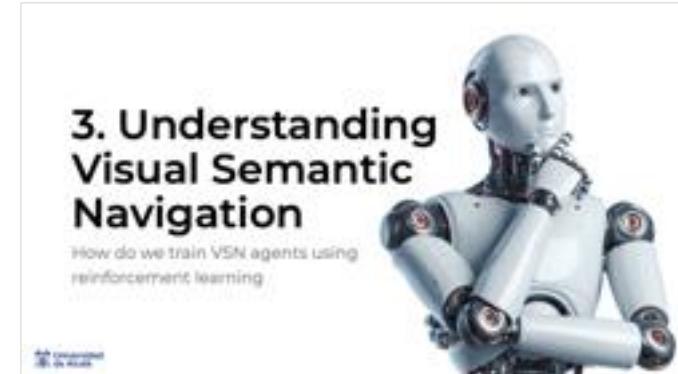
PhD. Program in Information and Communication Technologies

Thesis presentation by Carlos Gutiérrez Álvarez

Directed by Roberto Javier López Sastre

Alcalá de Henares, 22 of January of 2026

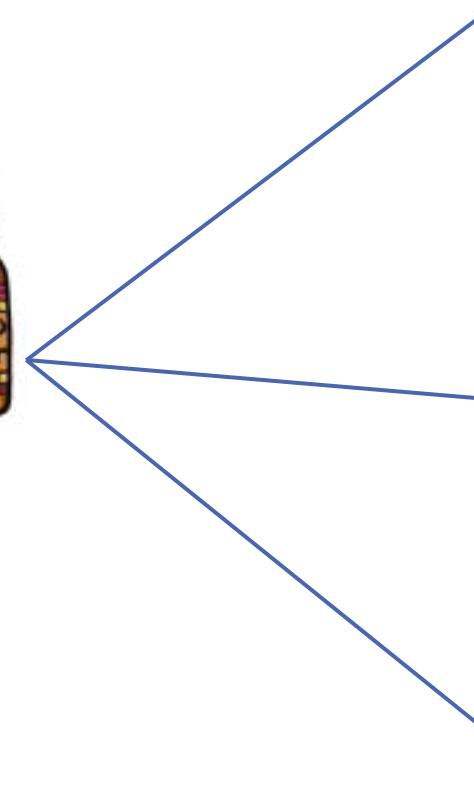
Summary



1. Motivation

Why do we study robotic navigation?

Why Navigation Matters



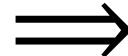
Interact

Explore

Move

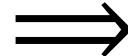
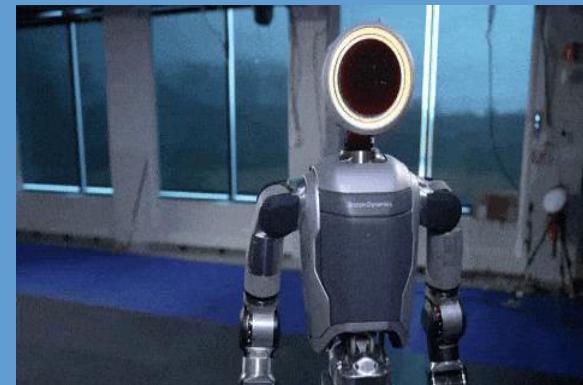
Why Navigation Matters

Embodied intelligent entities



Interaction with the real world

Interaction with the real world



Movement

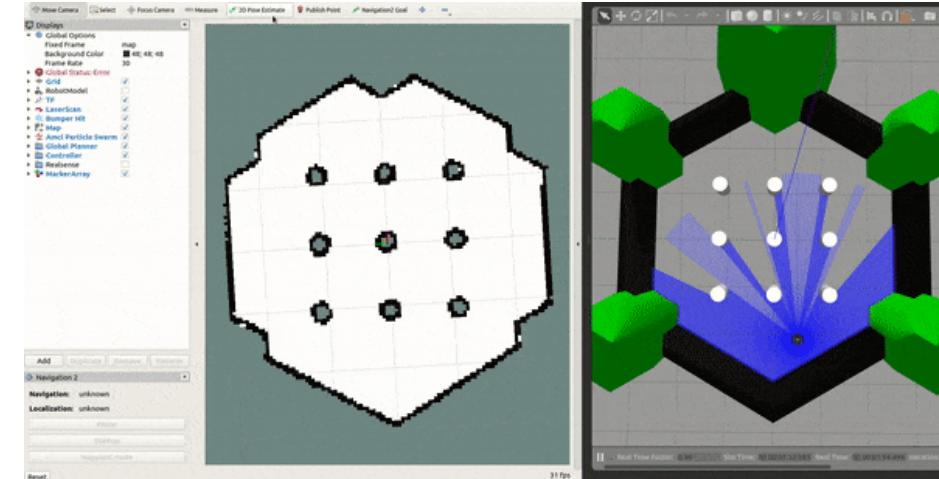
Why Navigation Matters

Without navigation there is
no embodied intelligence

Different types of robotic navigation

Classical Navigation

- Navigation based on the use of geometrical information to calculate most optimal routes.
- It needs a previously existing map of the environment or the creation of it on the fly.

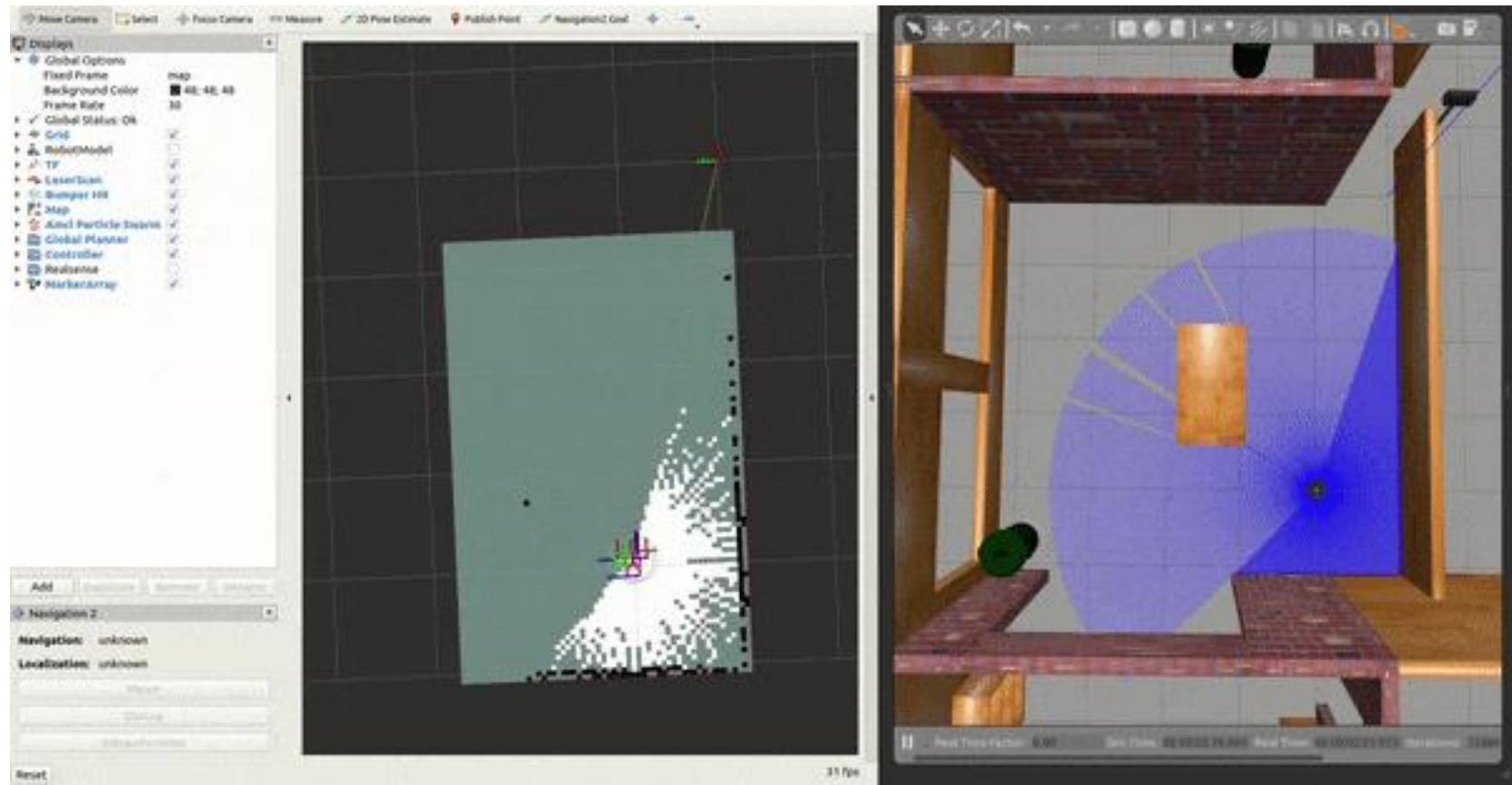


Visual Semantic Navigation

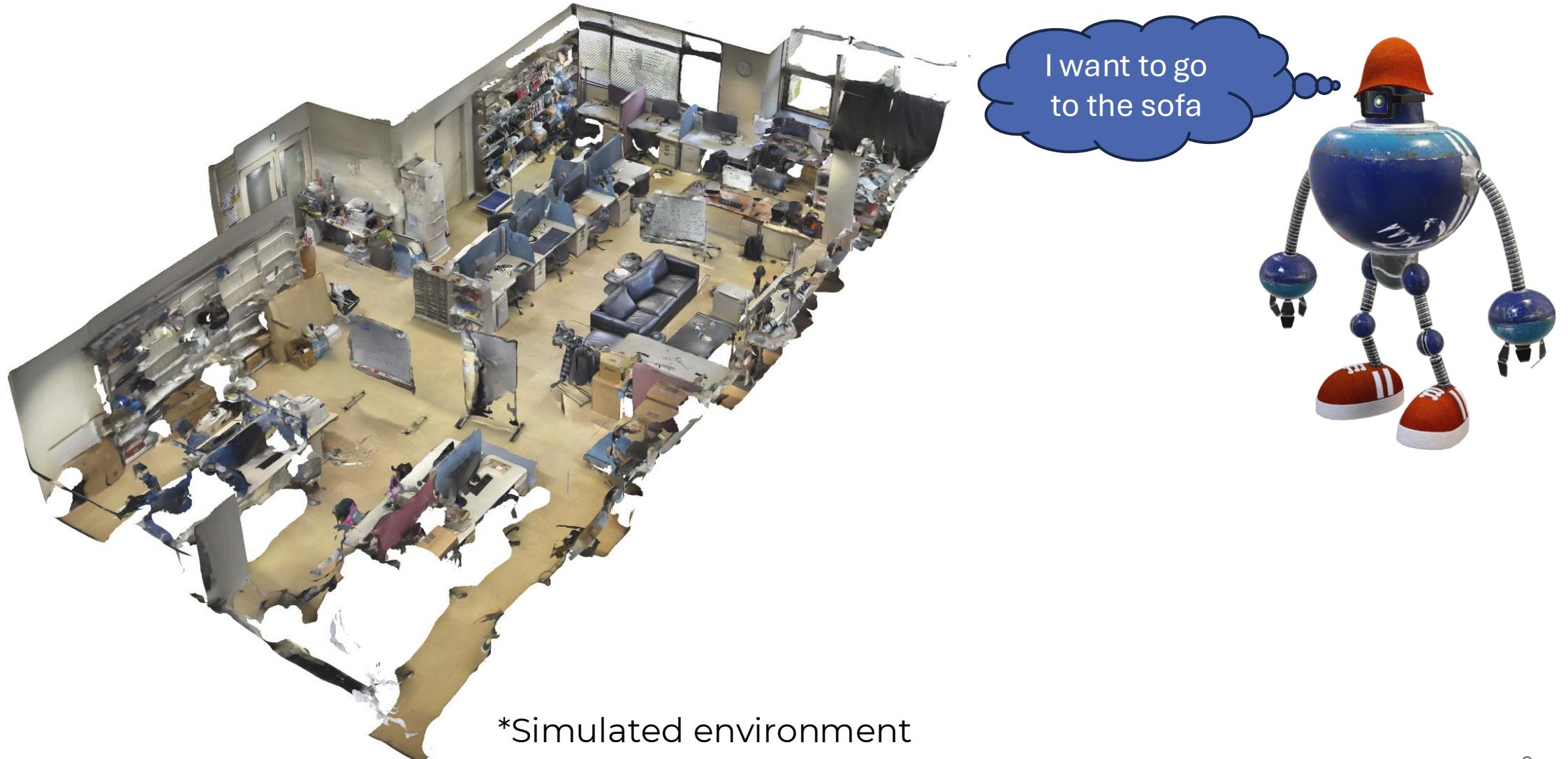
- Based on the use of egocentric images of the agent to decide where to navigate.
- This approach does not necessarily need any map of the environment, but some approaches create it on the fly.

Classical Navigation

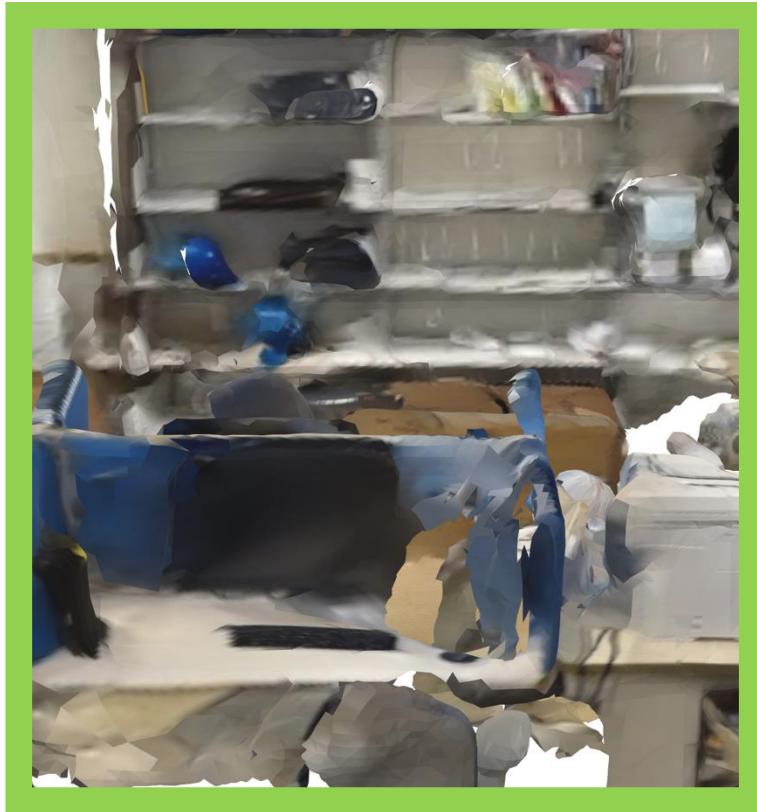
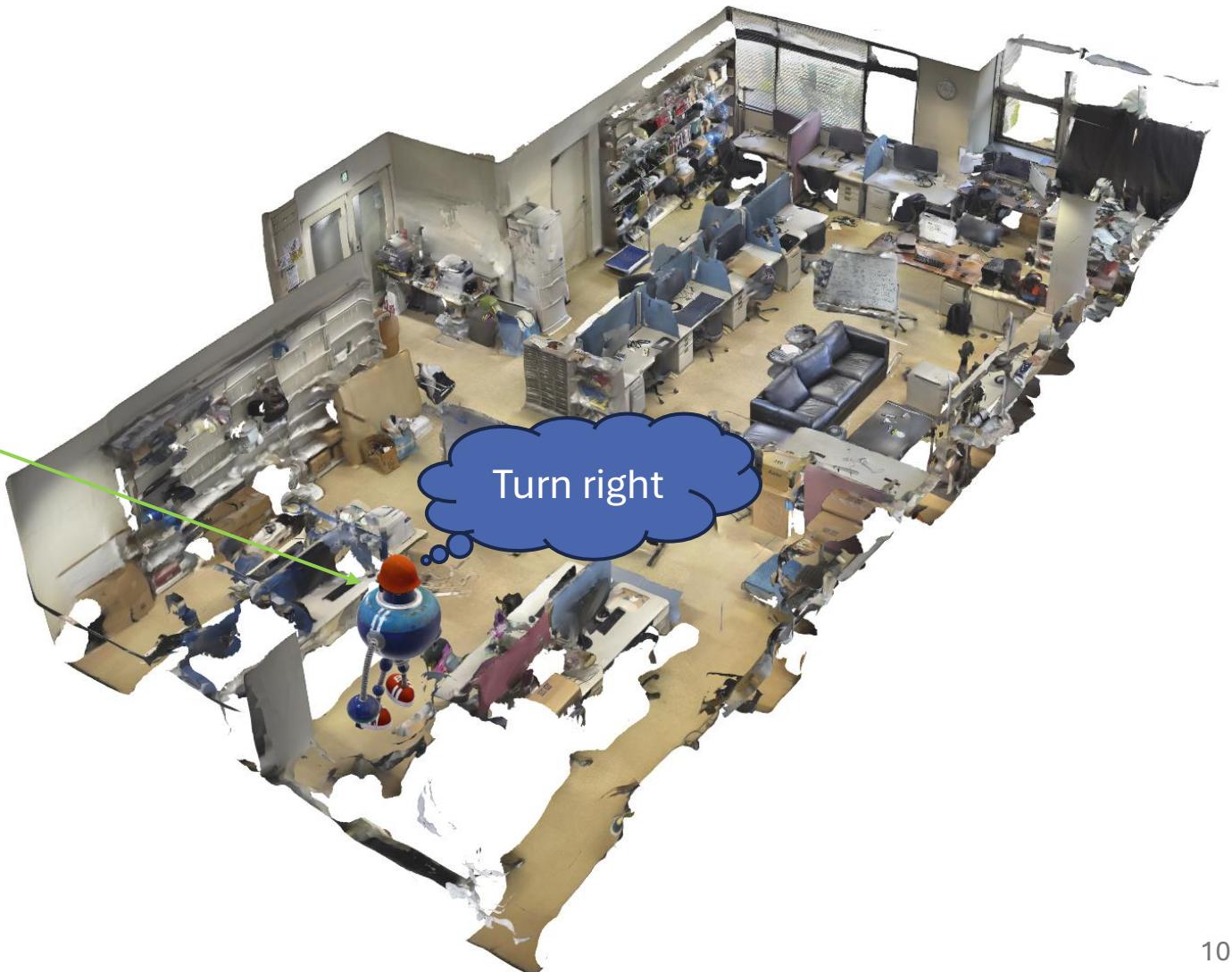
SLAM – Simultaneous Localization and Mapping



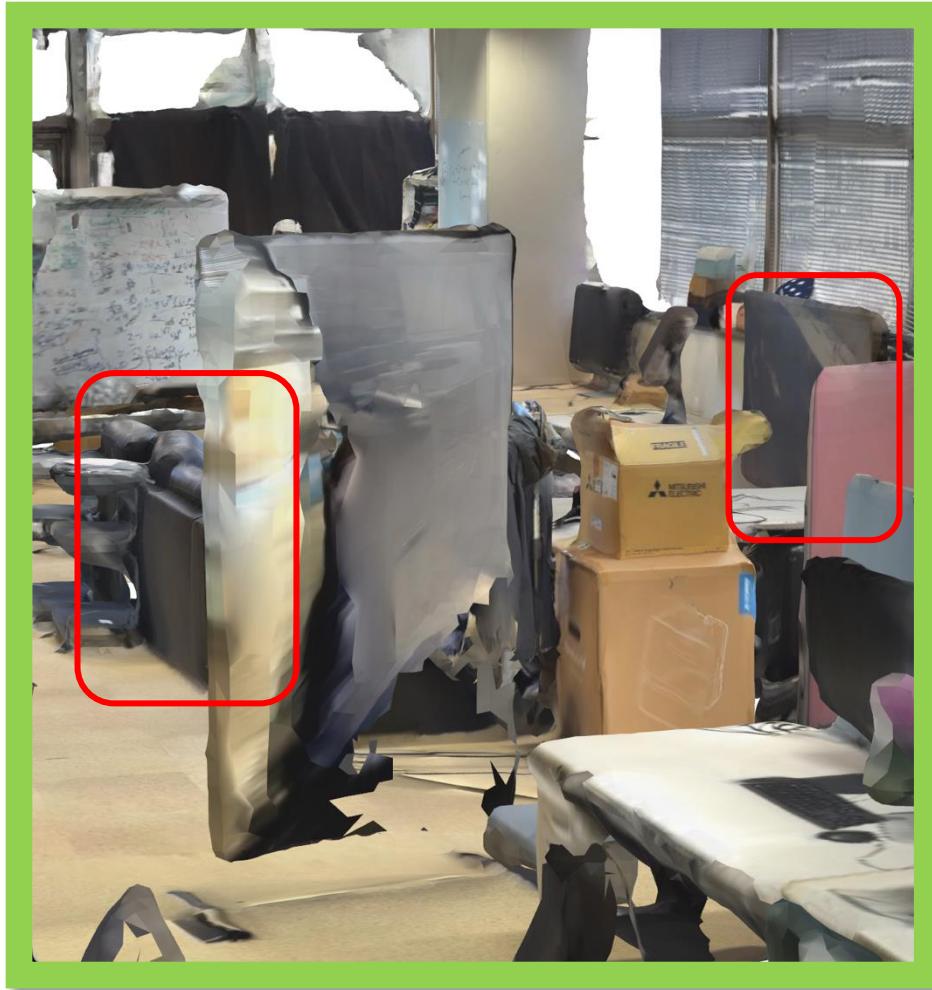
Visual Semantic Navigation



Visual Semantic Navigation

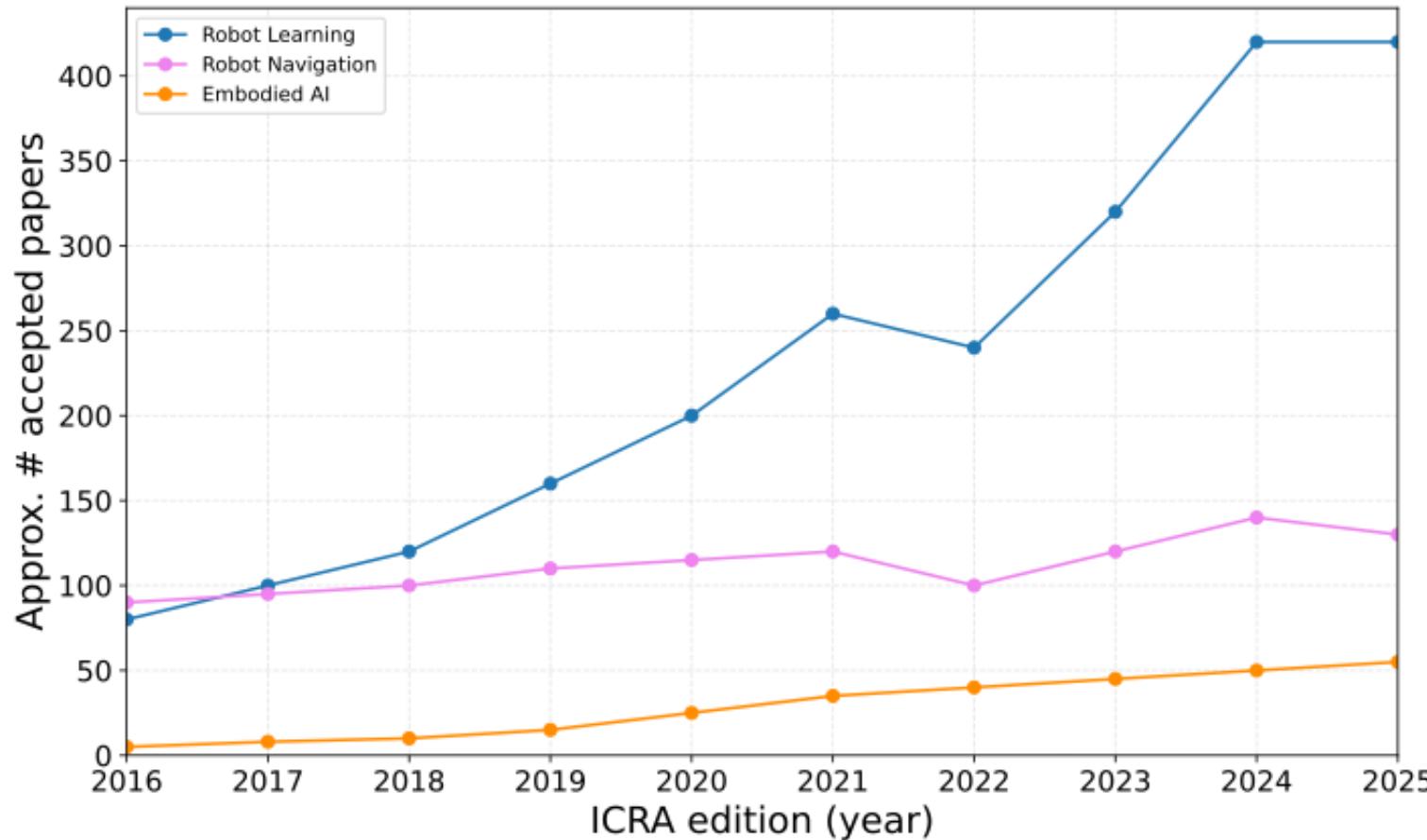


Visual Semantic Navigation



Visual Semantic Navigation

This is a Hot Research Topic



This is a Hot Research Topic

The Scientific Challenges

1. Exploration vs exploitation

How to decide when to stop exploring and exploiting the knowledge of the scene.

2. Generalization

How to transfer the knowledge from one environment to another.

3. Sim-to-real

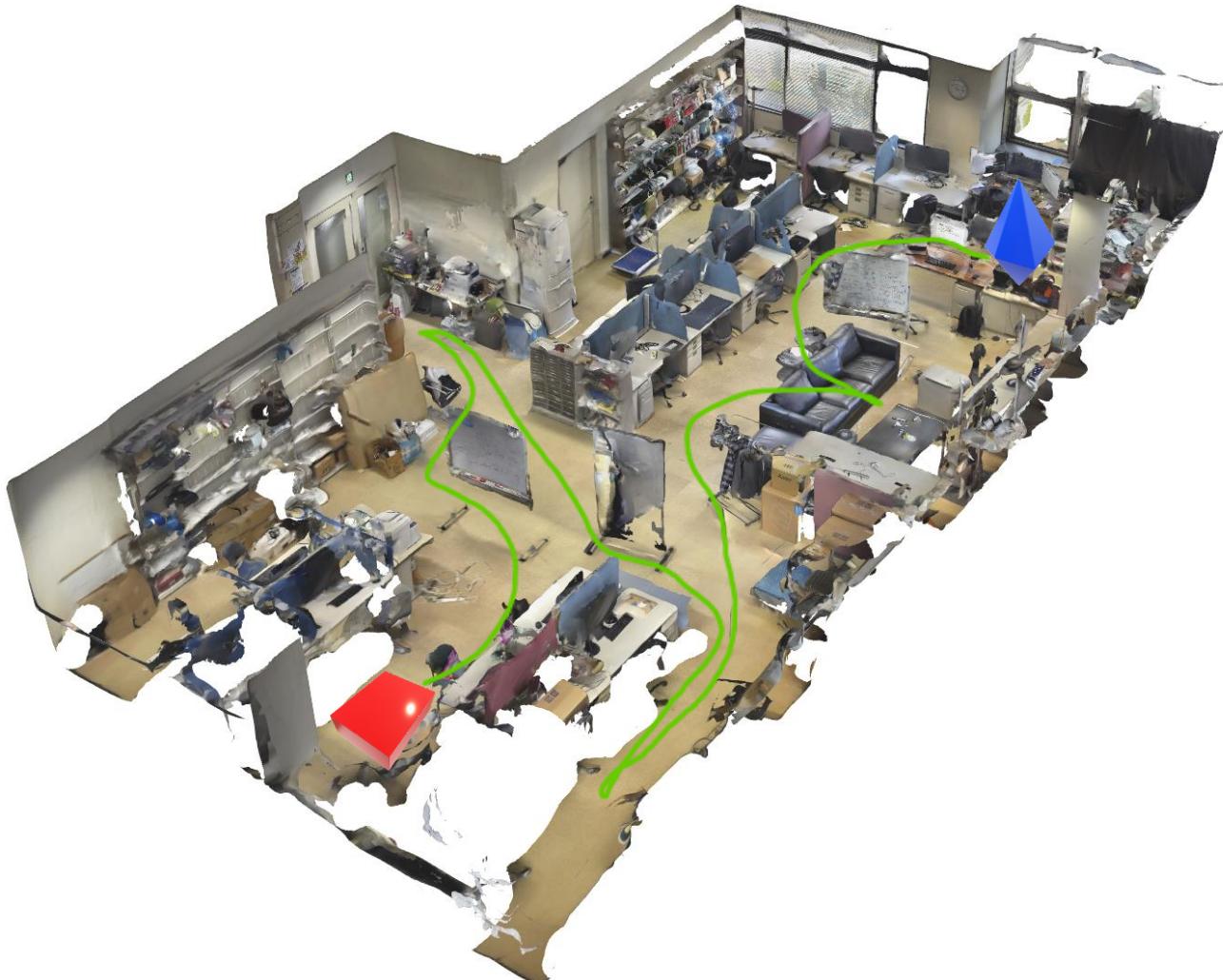
How to transfer the knowledge from simulated environments to real ones.

The Scientific Challenges

1. Exploration vs exploitation

The Scientific Challenges

1. Exploration vs exploitation



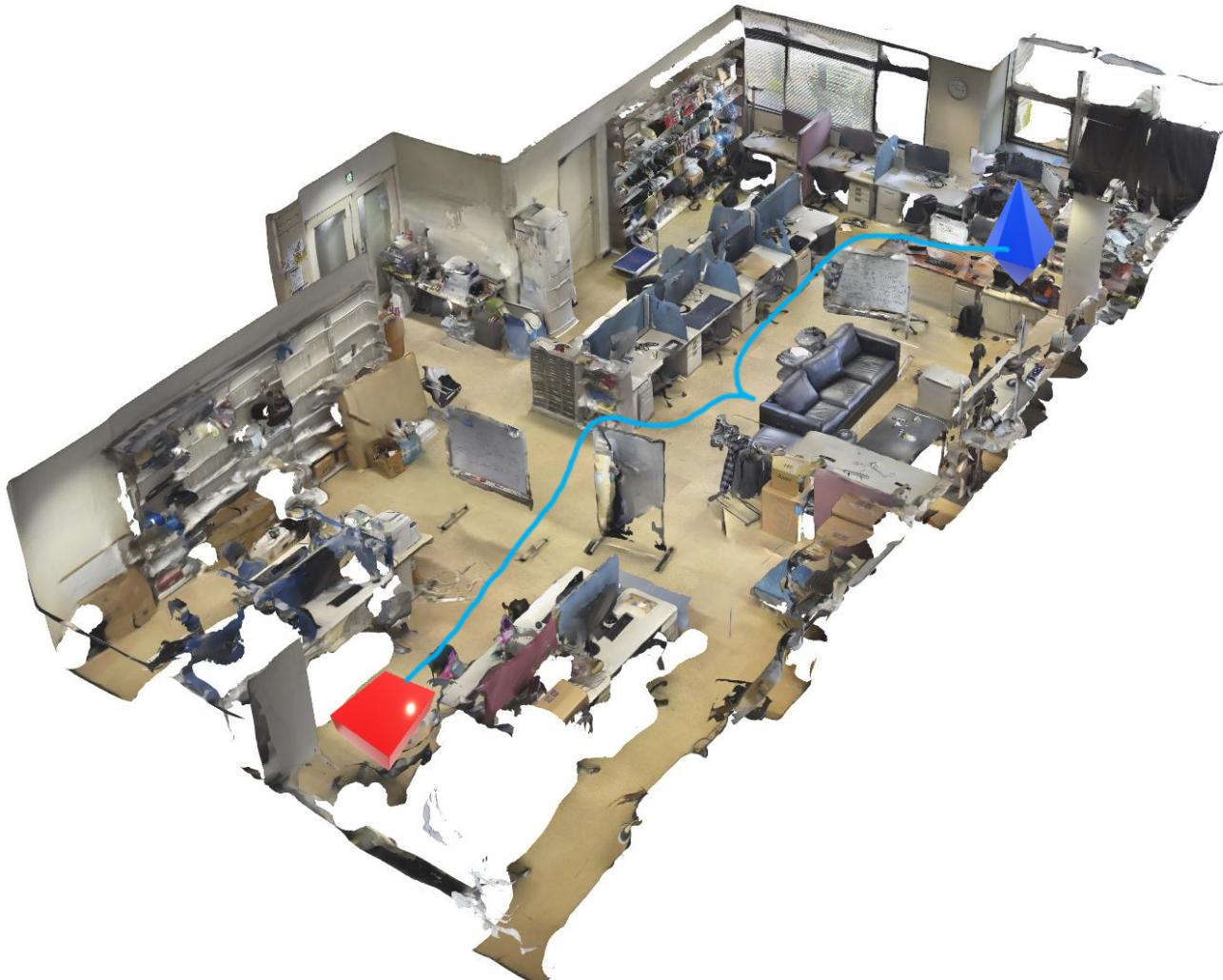
The Scientific Challenges

1. *Exploration vs exploitation*

- Exploration trajectory.
- Not optimal but probably will get to the target.

The Scientific Challenges

1. Exploration vs exploitation



The Scientific Challenges

1. *Exploration vs exploitation*

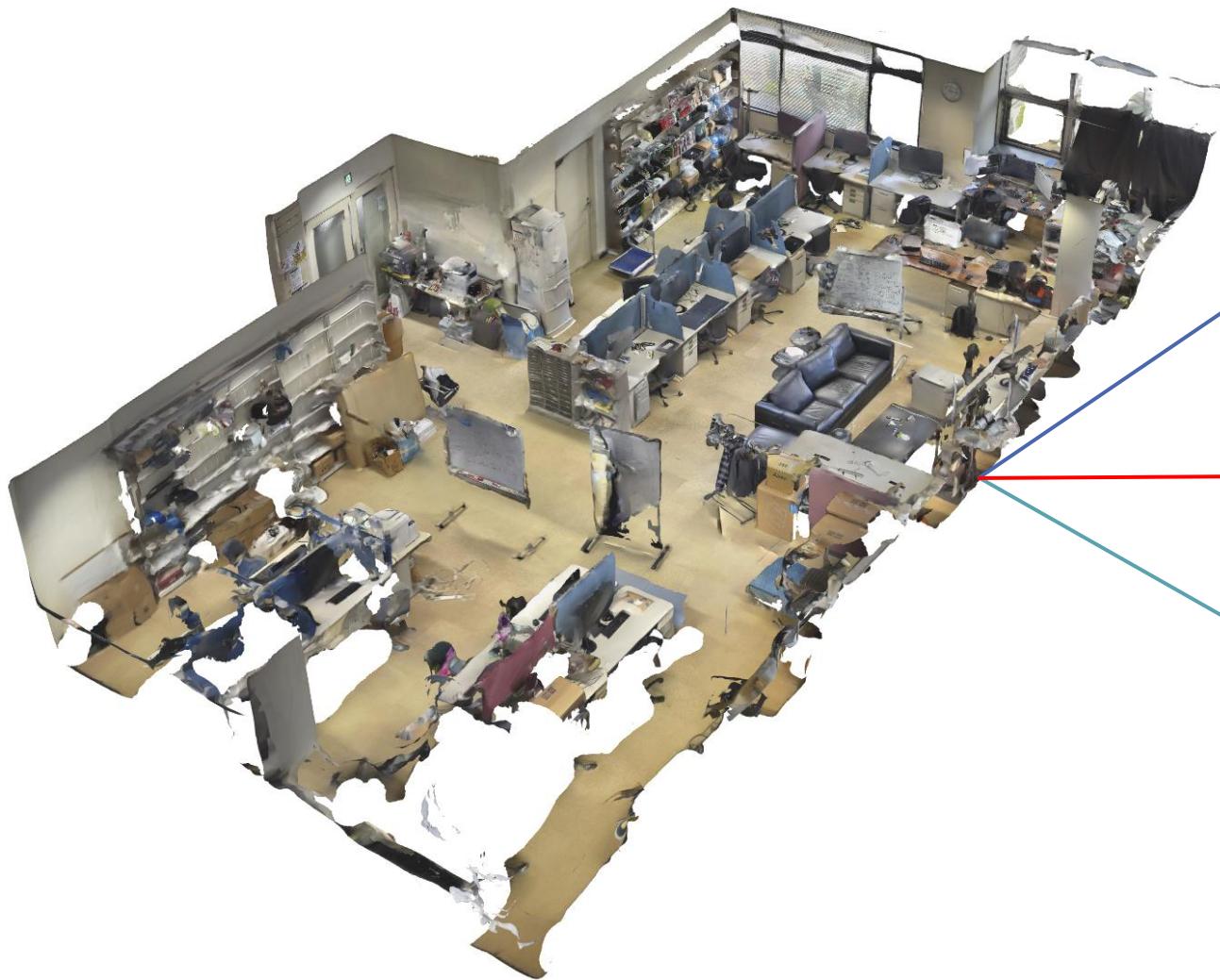
- Exploitation trajectory.
- Close to optimal path length.
- However, it needs previous knowledge of the environment.

The Scientific Challenges

2. Generalization

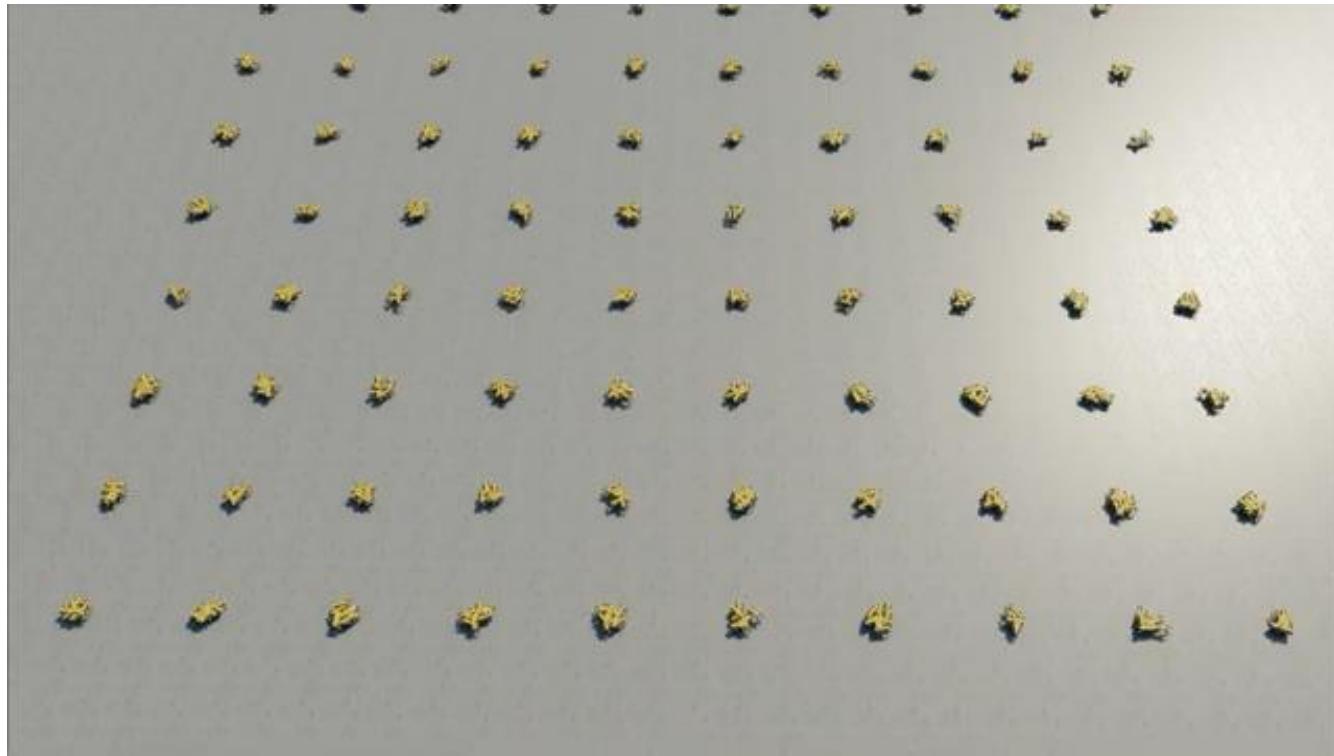
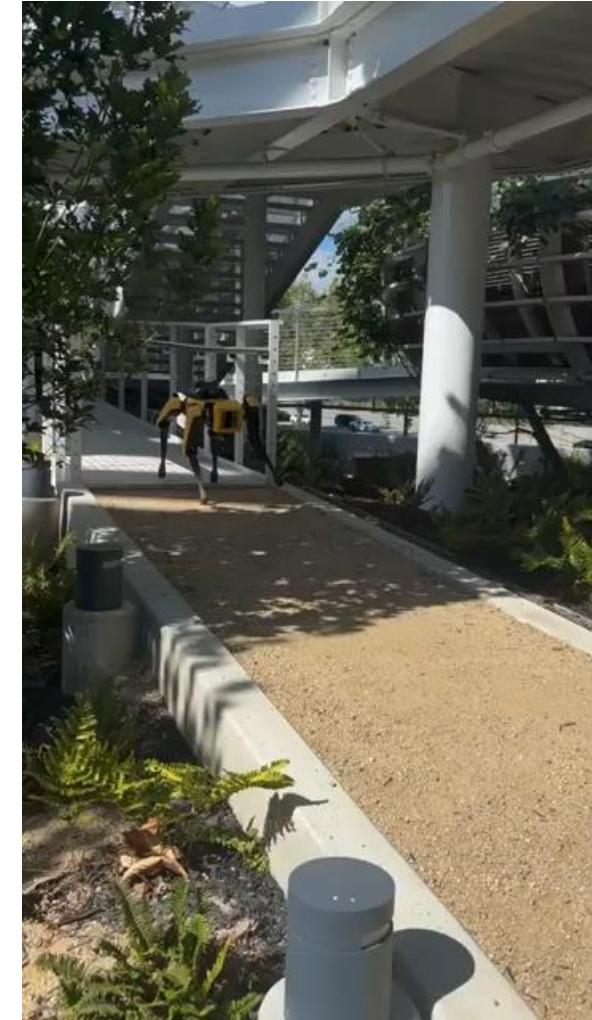
The Scientific Challenges

2. Generalization



The Scientific Challenges

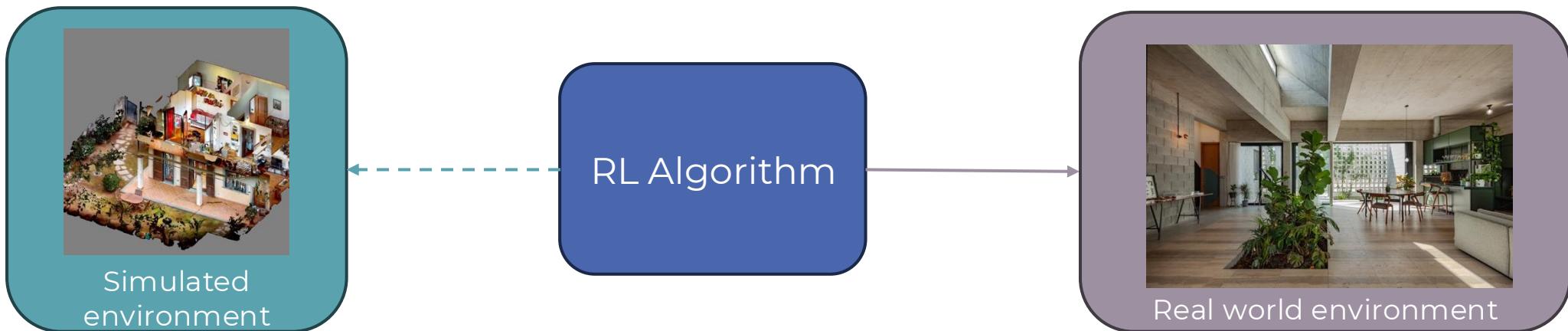
3. Sim-to-real

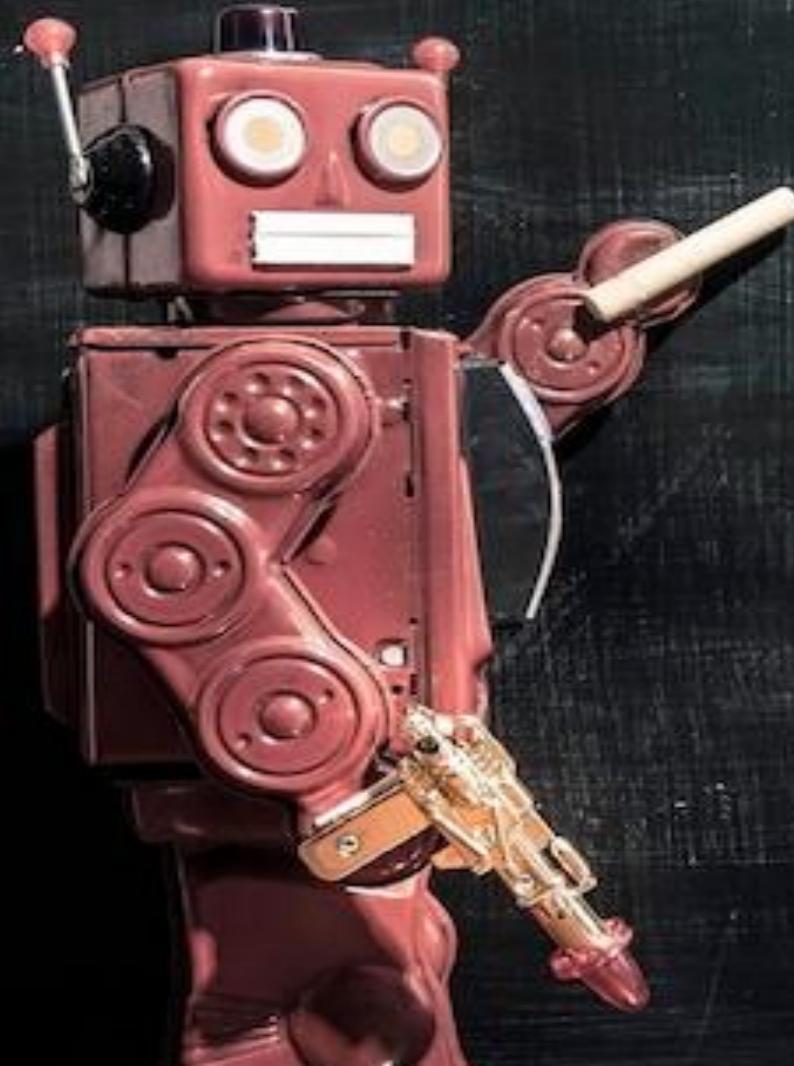


*videos from isaac sim documentation. 23

Thesis Objective

“Bridge simulation and real-world navigation via Reinforcement Learning (RL) algorithms”





2. Theoretical framework

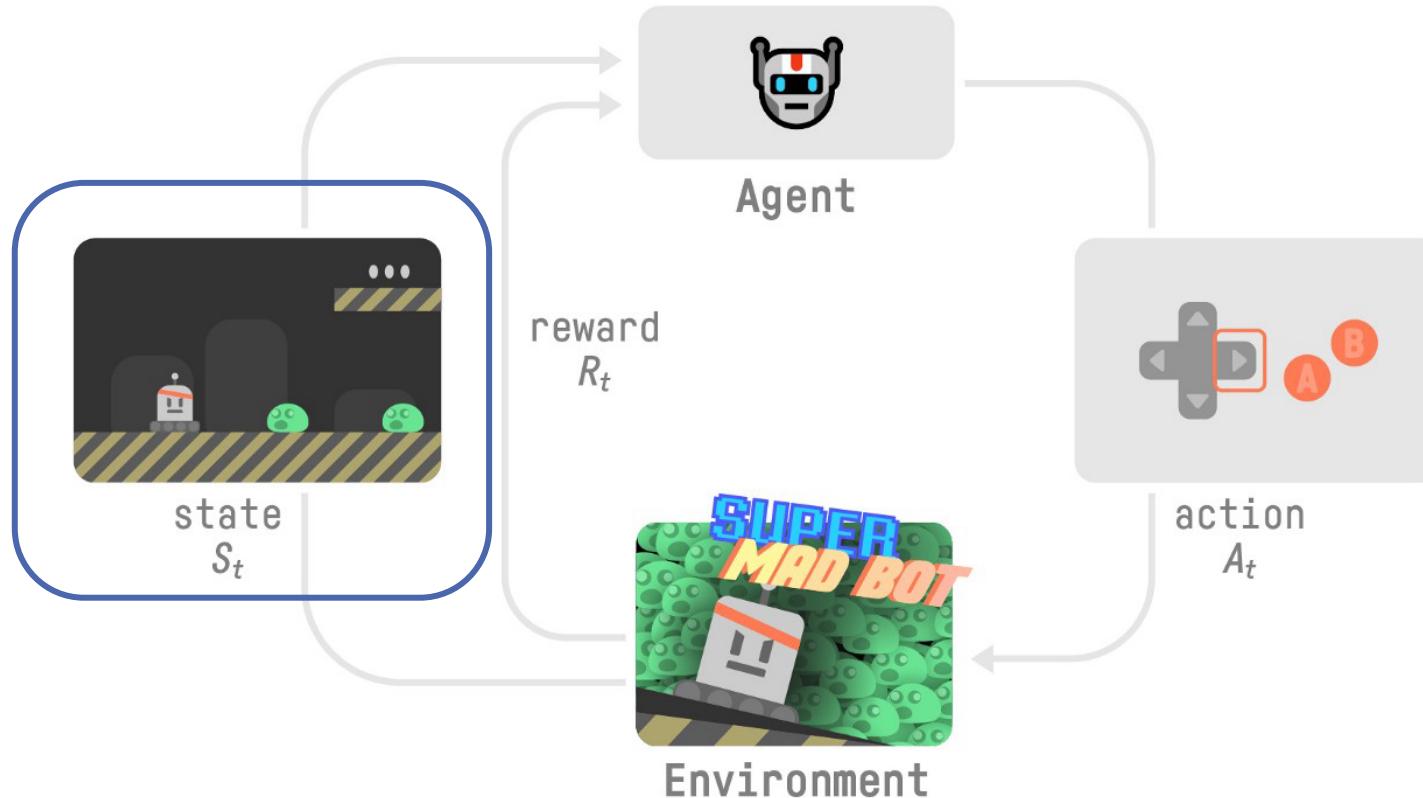
How do we study robotic navigation?

RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$

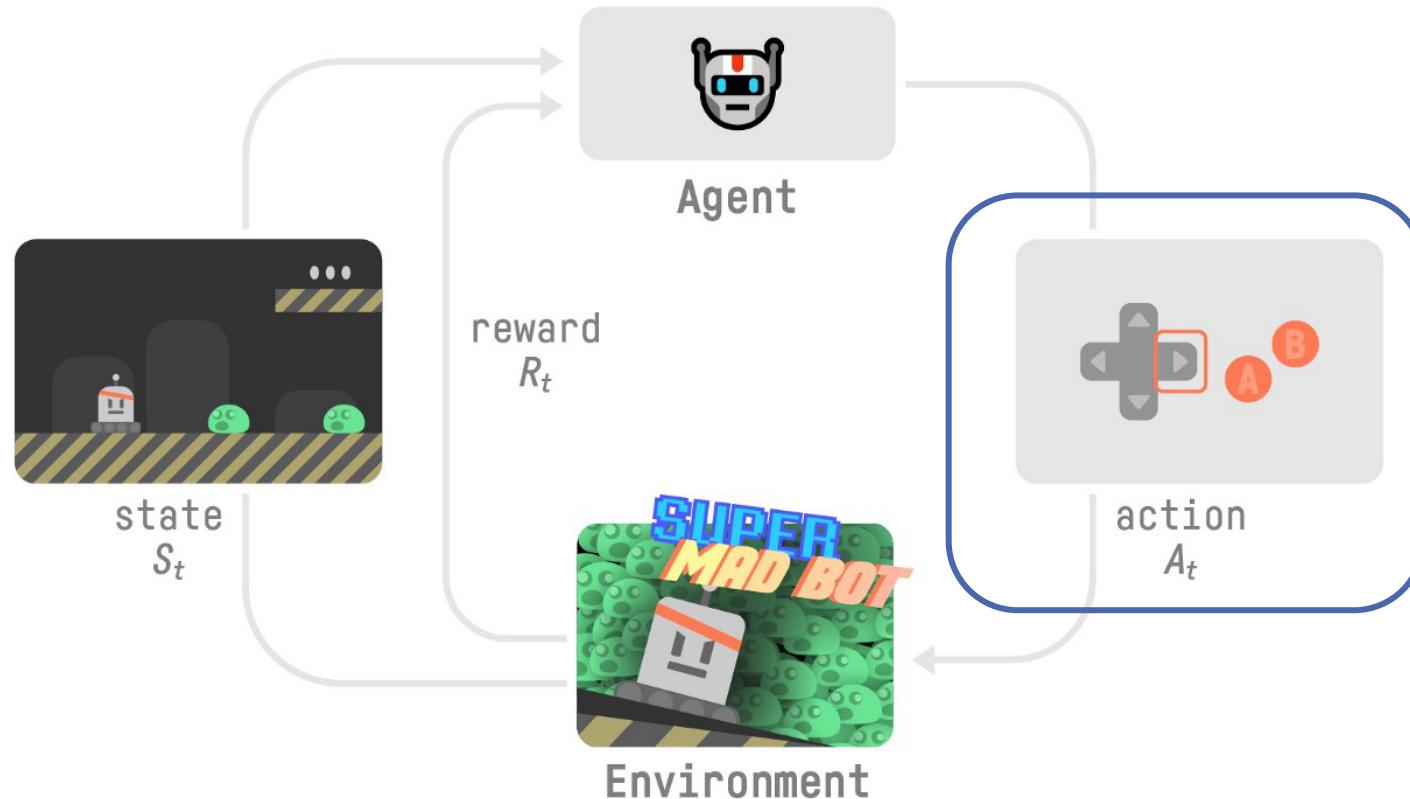
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$



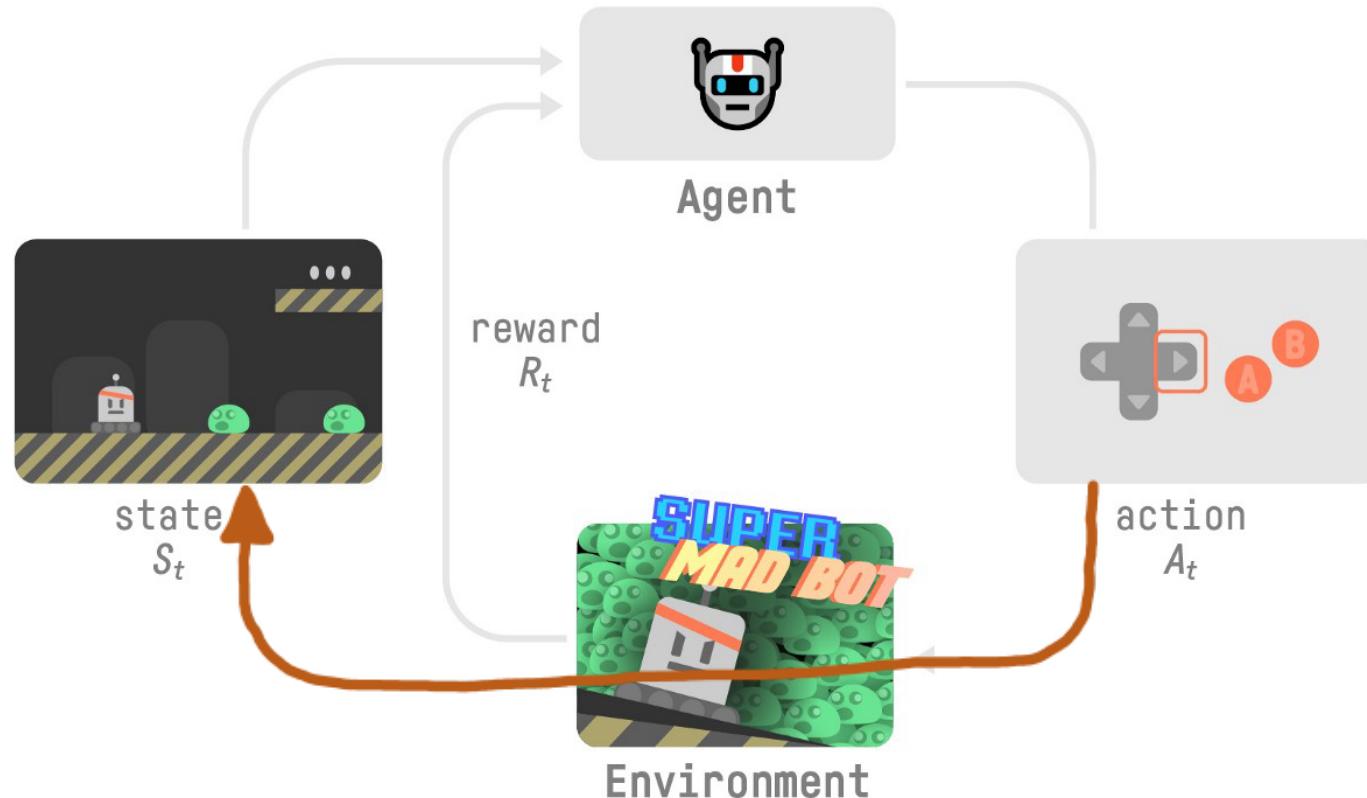
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, \boxed{a_t}, P_{a,t}, r_{a,t}\}$$



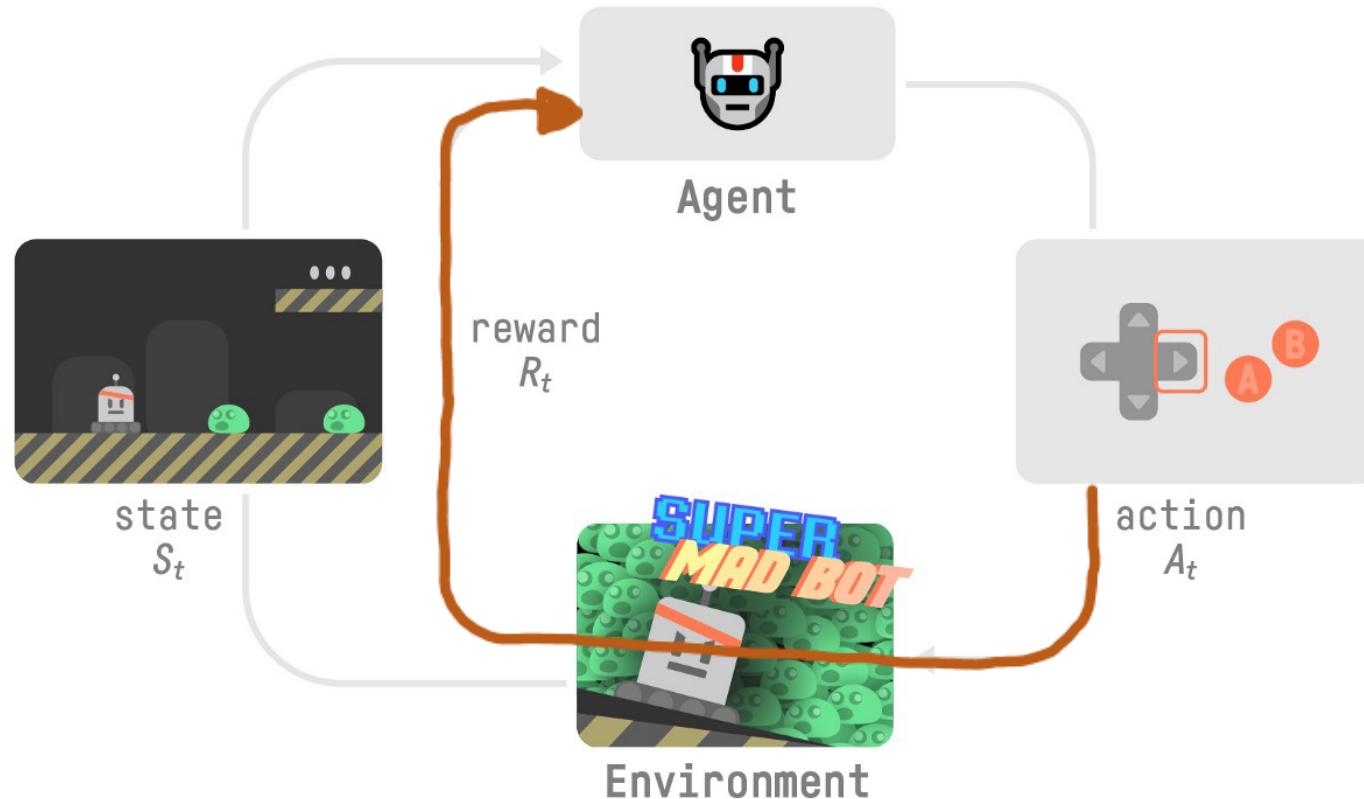
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$



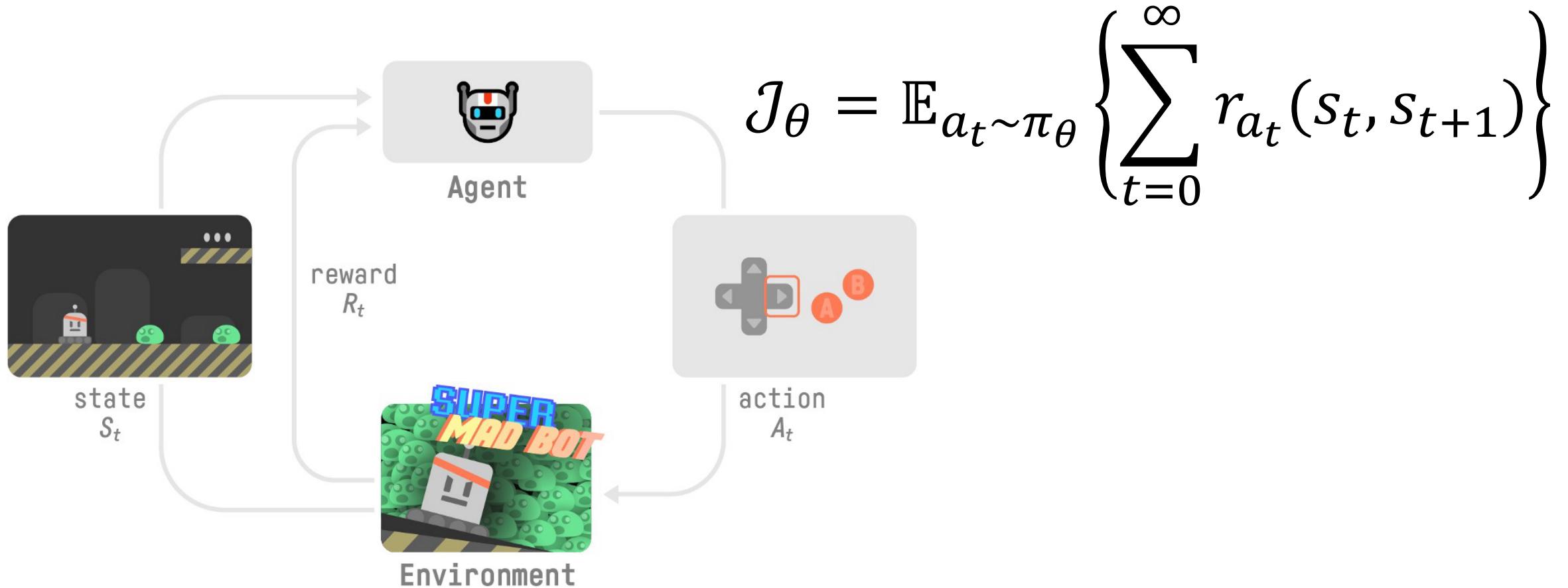
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, \boxed{r_{a,t}}\}$$



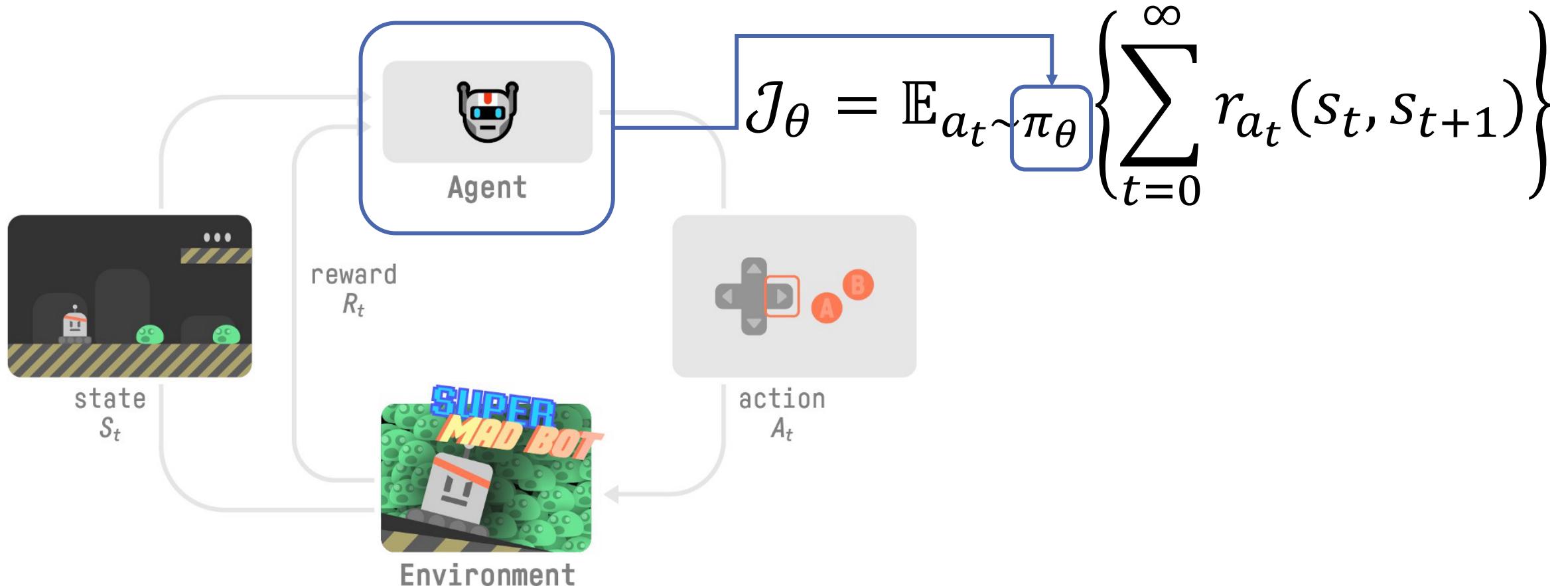
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$



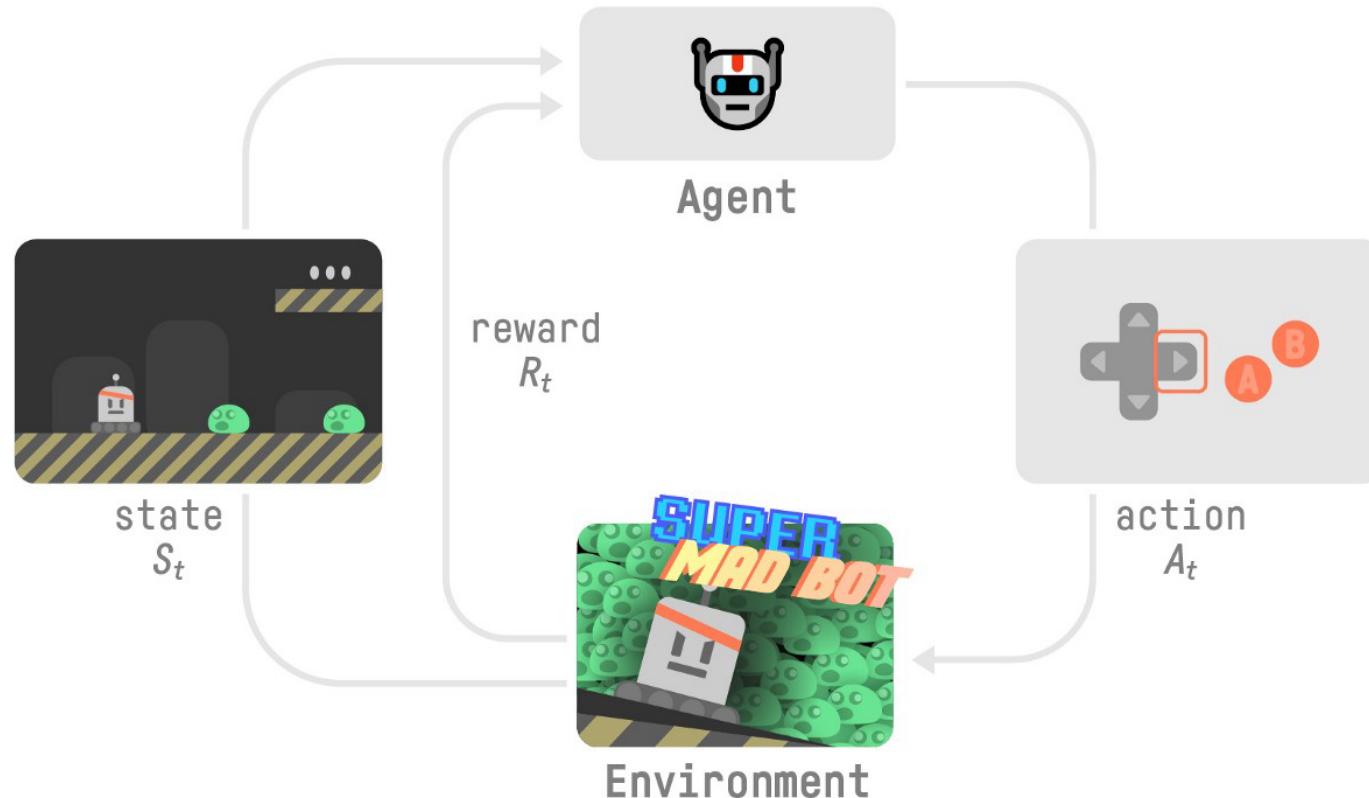
RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$



RL for Visual Semantic Navigation (VSN)

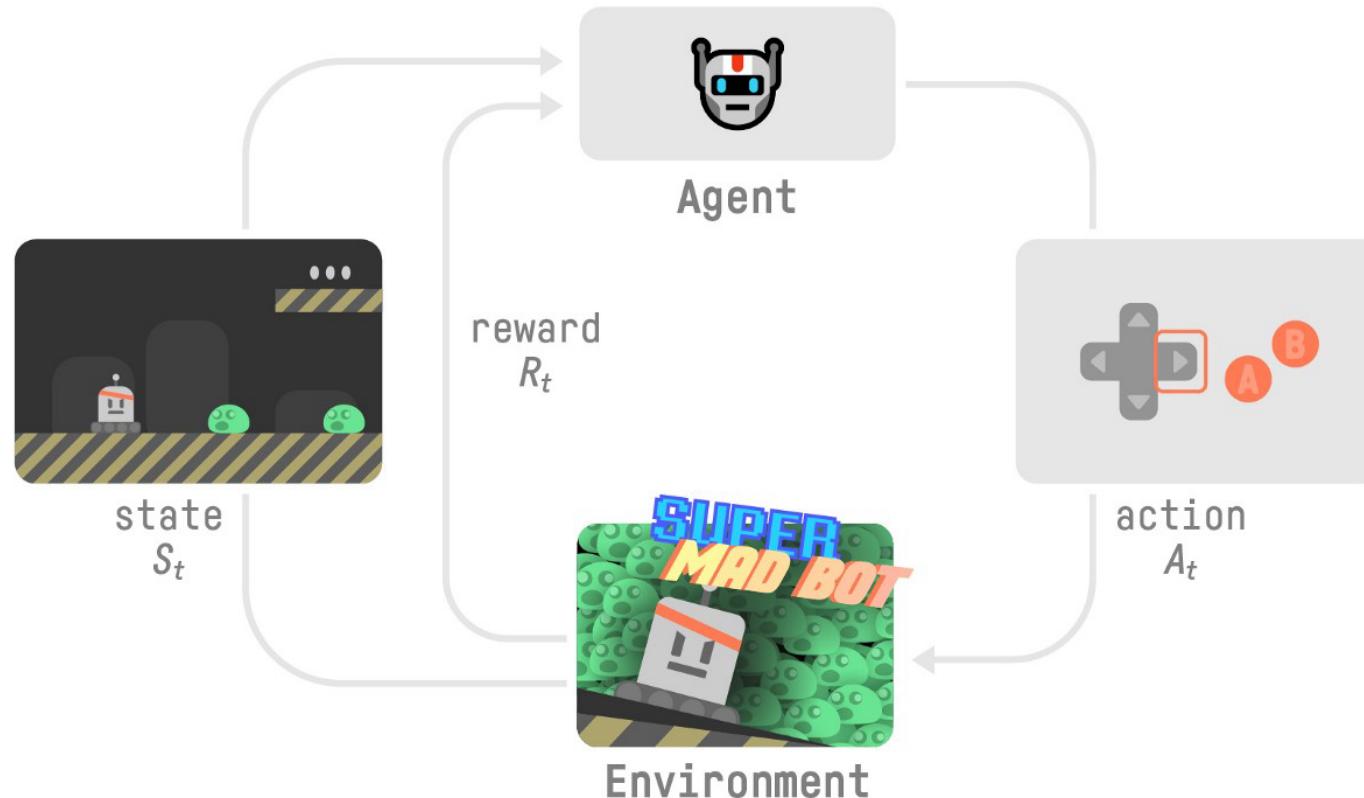
$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\} \quad POMDP = \{o_t, a_t, P_{a,t}, r_{a,t}\}$$



RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$

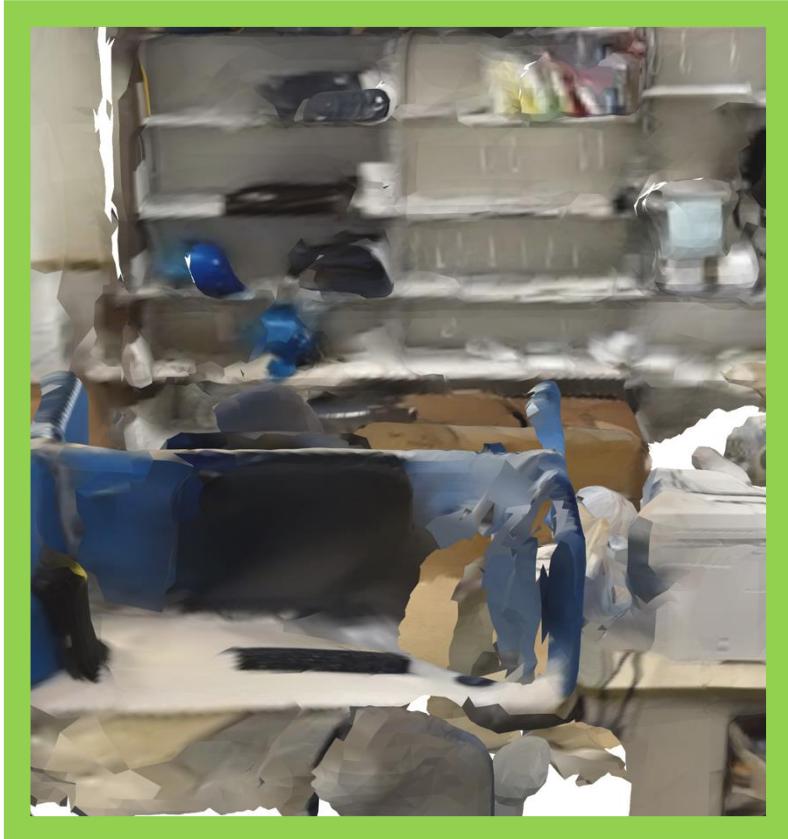
$$POMDP = \{o_t, a_t, P_{a,t}, r_{a,t}\}$$



RL for Visual Semantic Navigation (VSN)

$$MDP = \{s_t, a_t, P_{a,t}, r_{a,t}\}$$

$$POMDP = \{o_t, a_t, P_{a,t}, r_{a,t}\}$$



Three Families of VSN

1. Classical methods

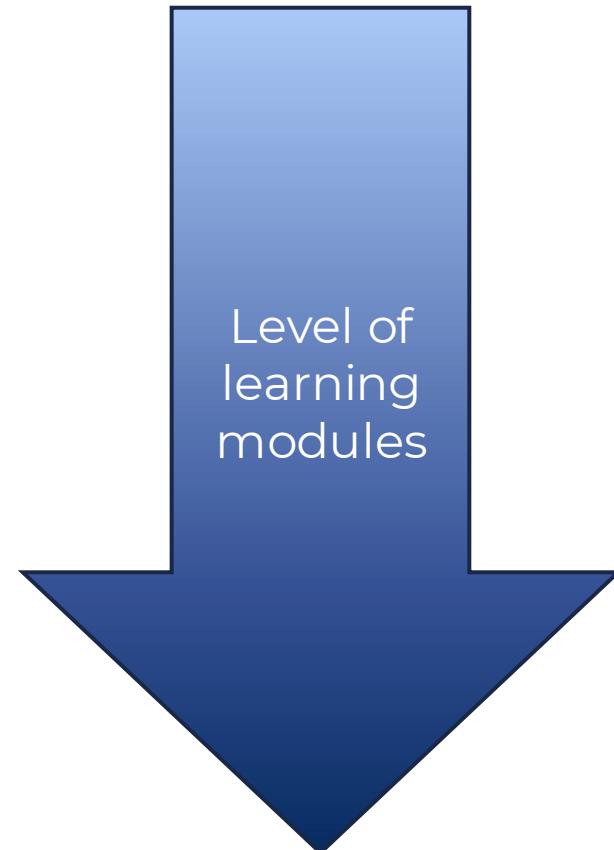
No learning components.

2. Modular learning methods

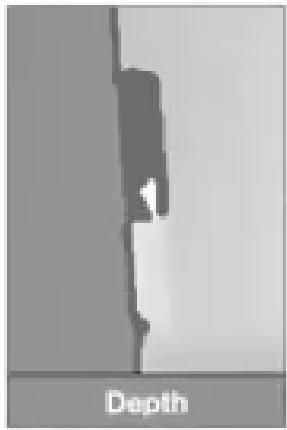
Mix between learning and non learning components.

3. End-to-end learning methods

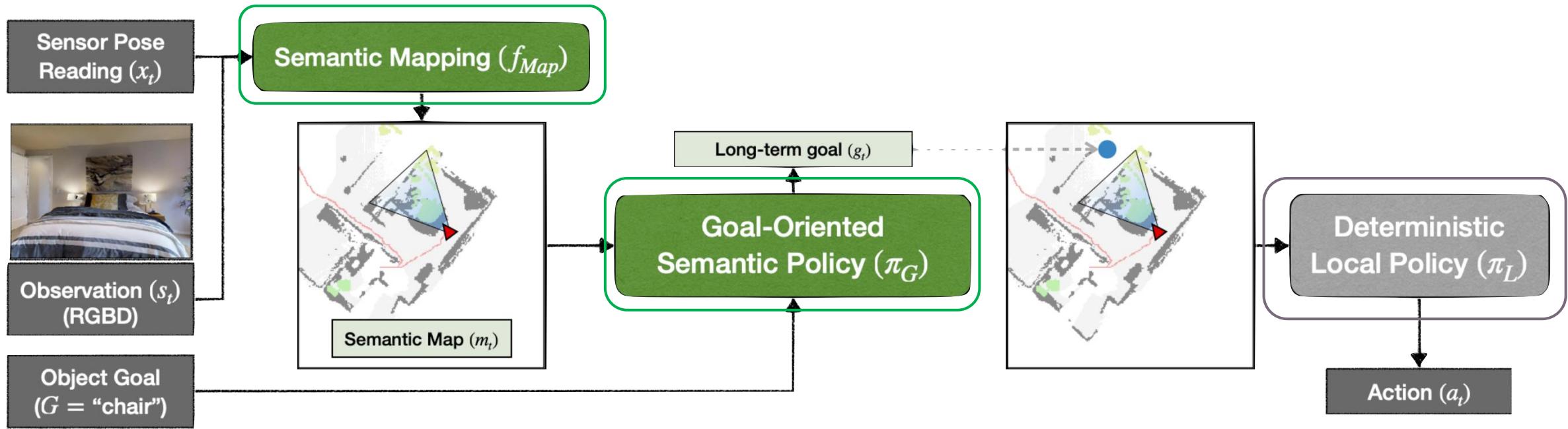
Only learning components.



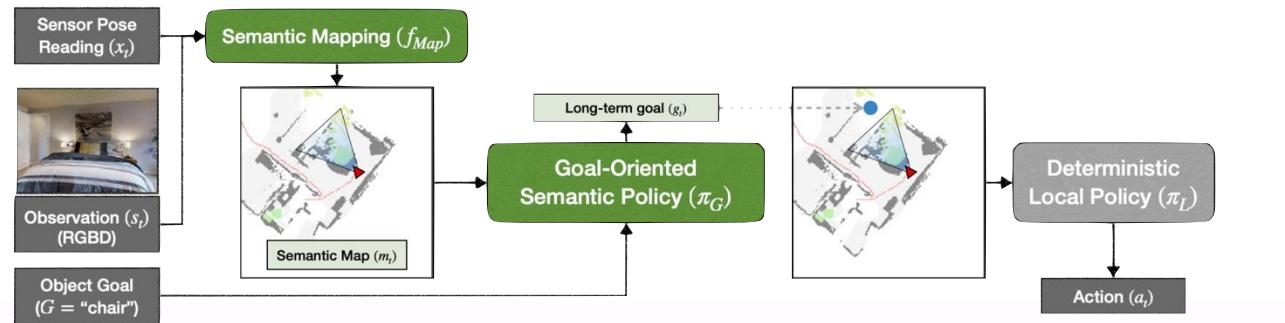
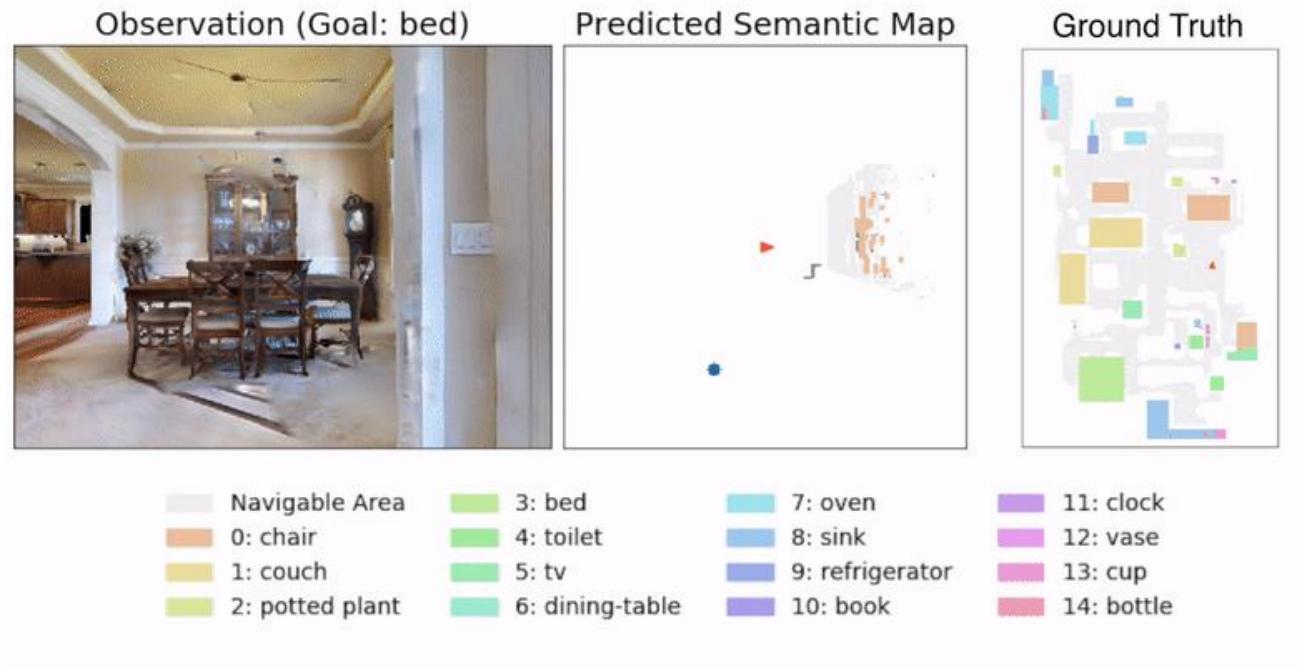
Classical methods



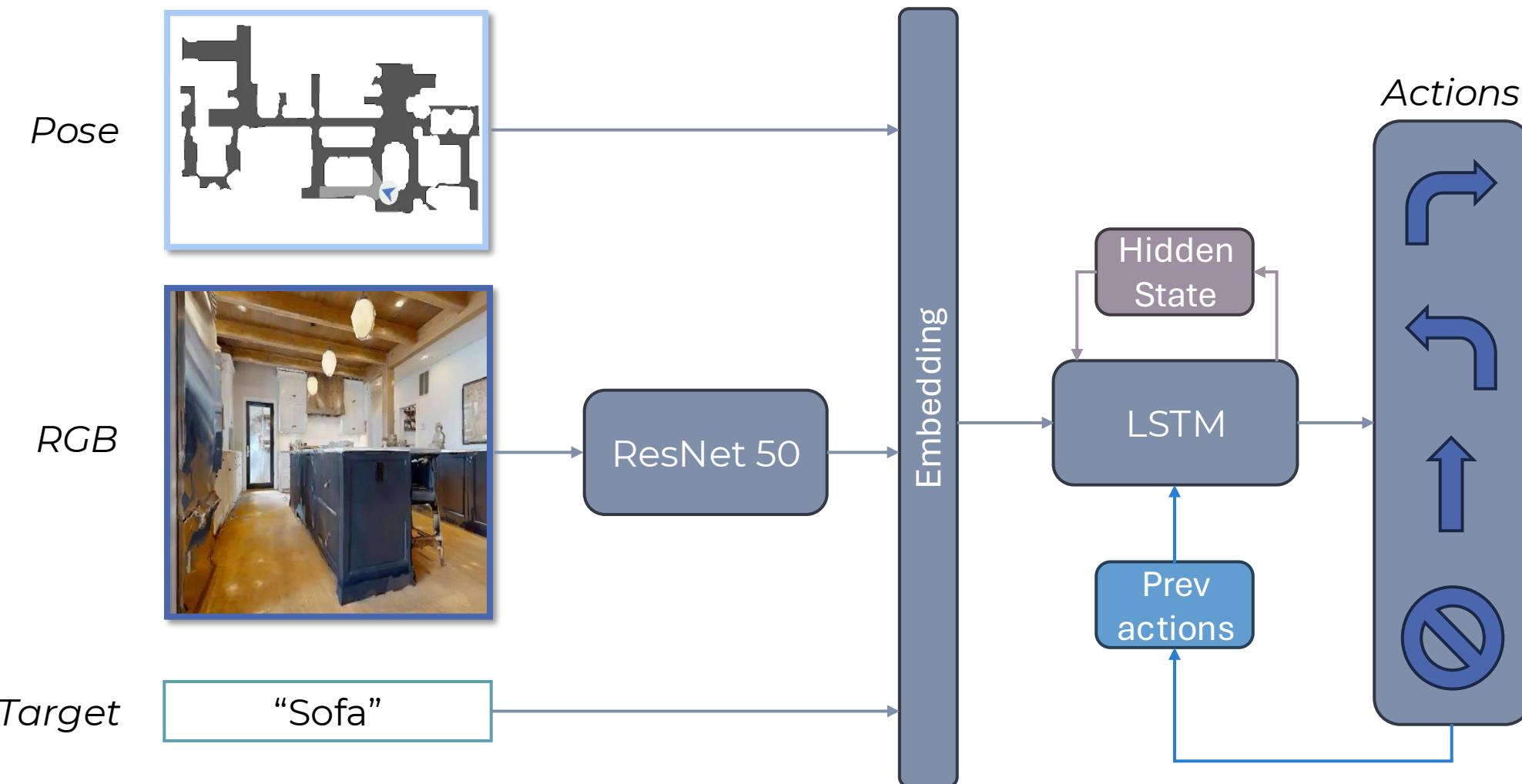
Modular learning



Modular learning

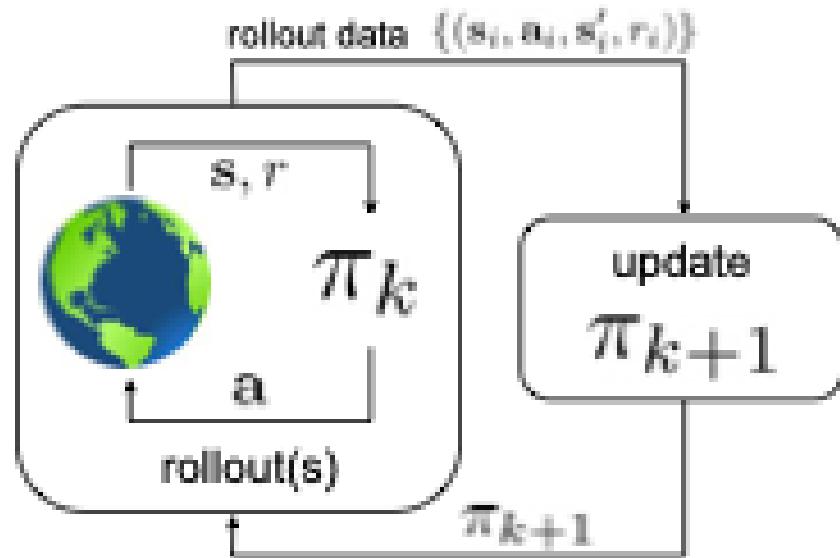


End-to-end learning

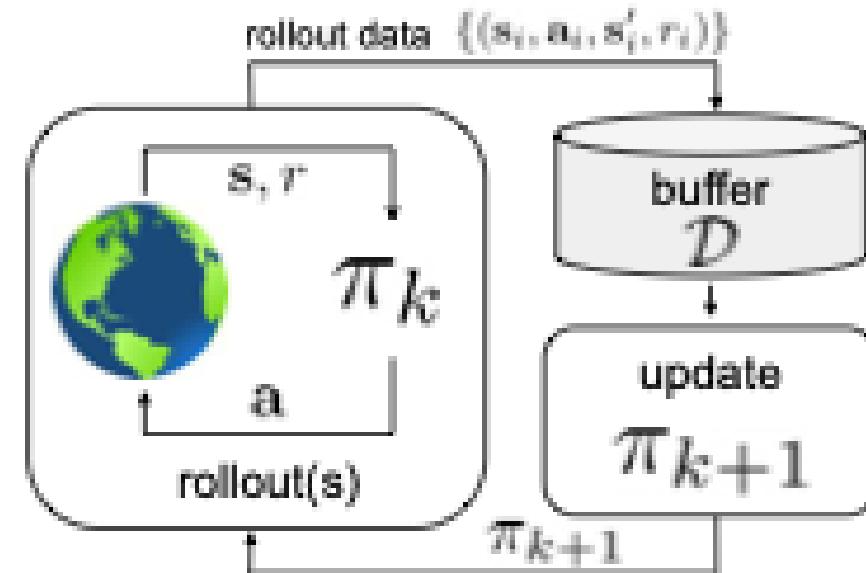


Offline RL

(a) online reinforcement learning

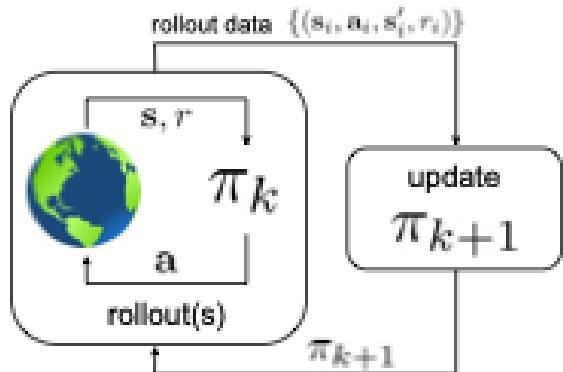


(b) off-policy reinforcement learning

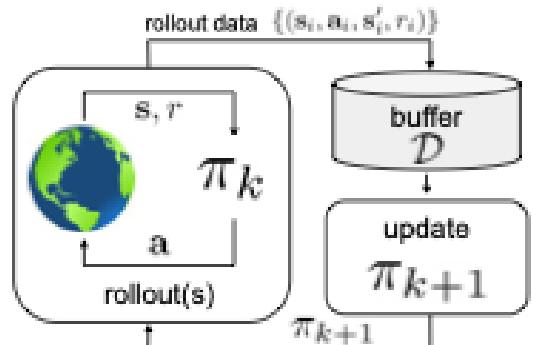


Offline RL

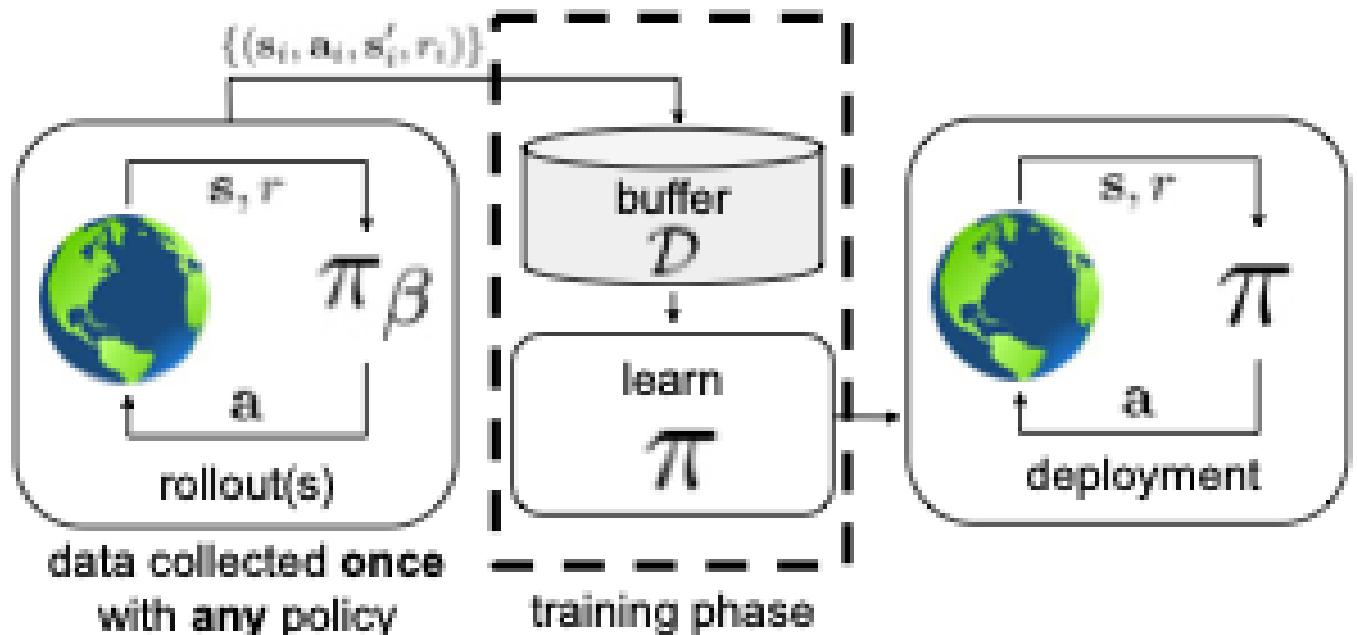
(a) online reinforcement learning



(b) off-policy reinforcement learning

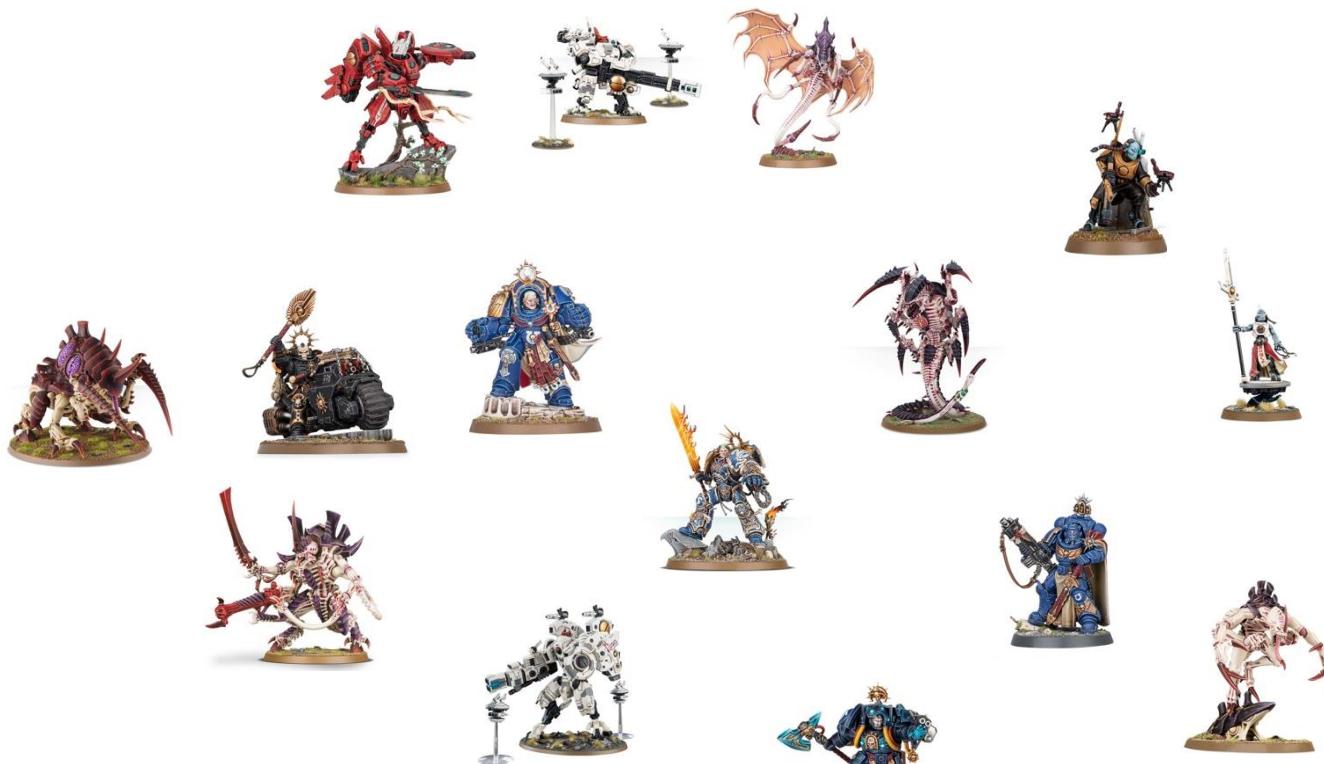
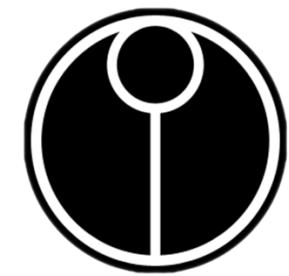
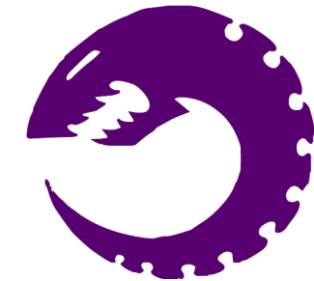


(c) offline reinforcement learning



Meta Learning

Meta Learning



Meta Learning

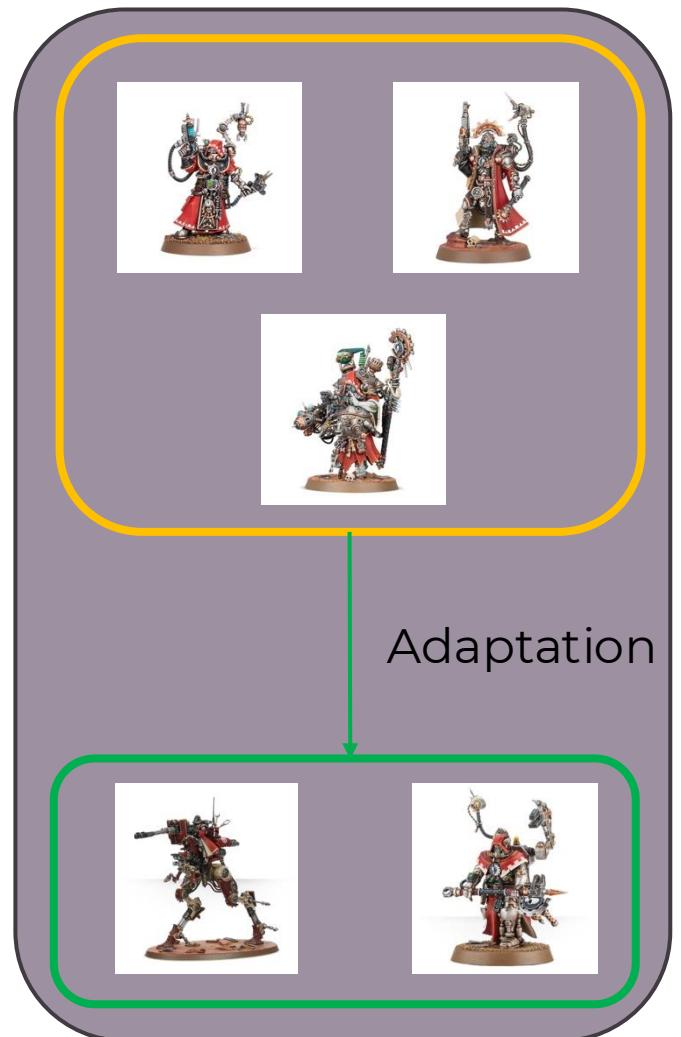
1. Meta training



Meta Learning

1. Meta training

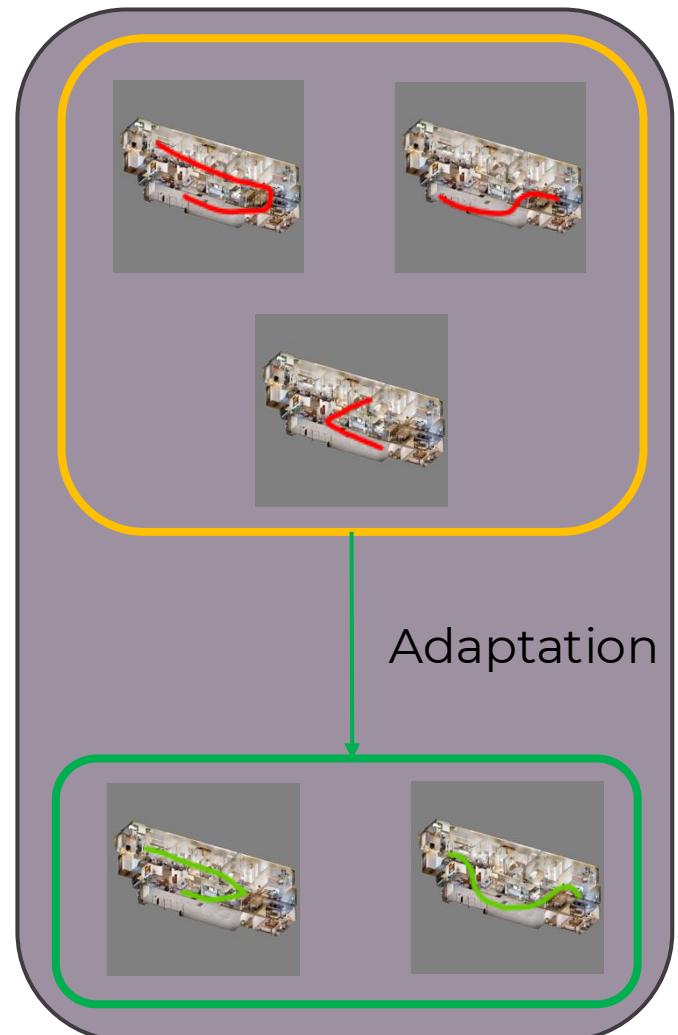
2. Meta testing



Meta Learning

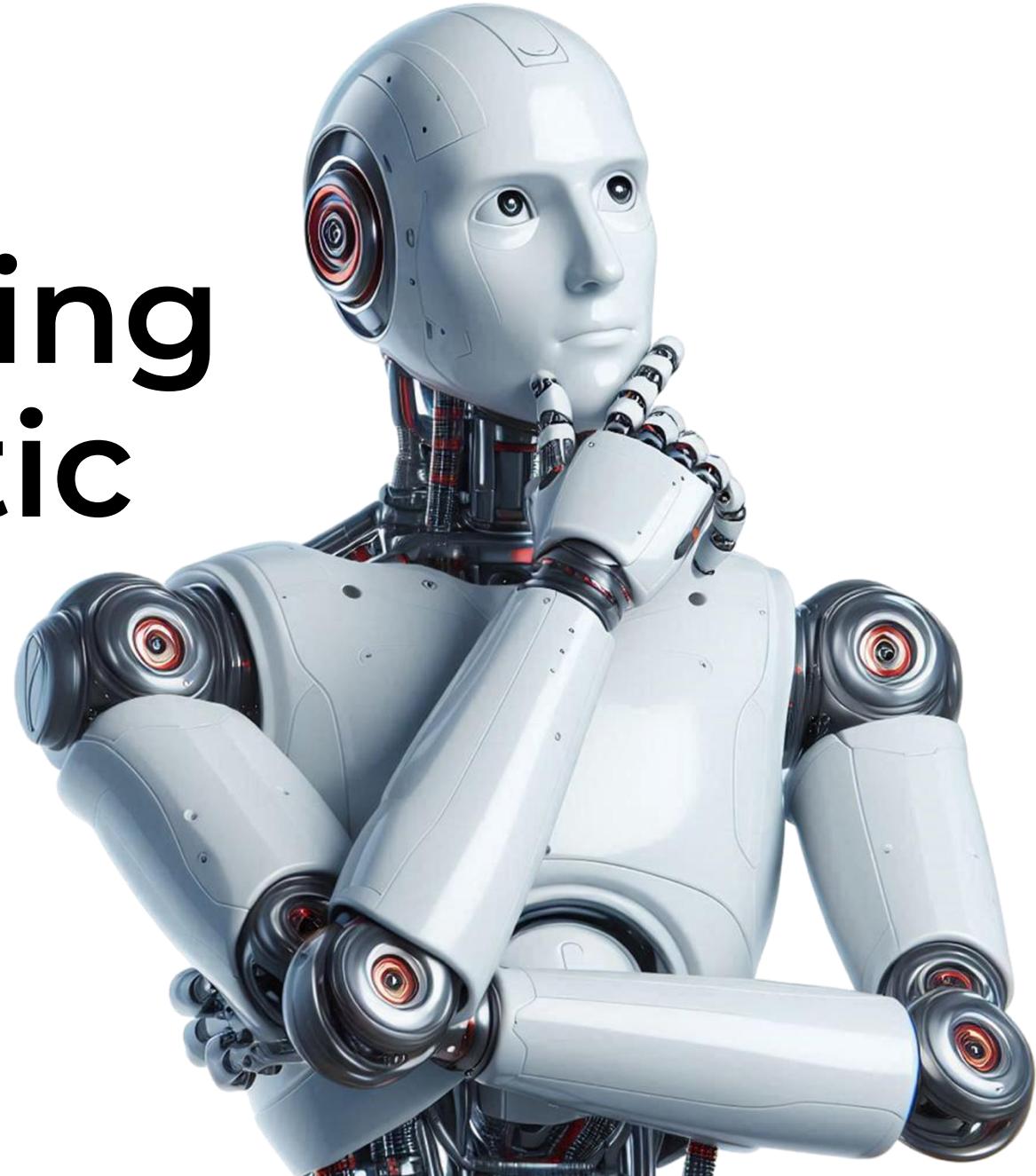
1. Meta training

2. Meta testing

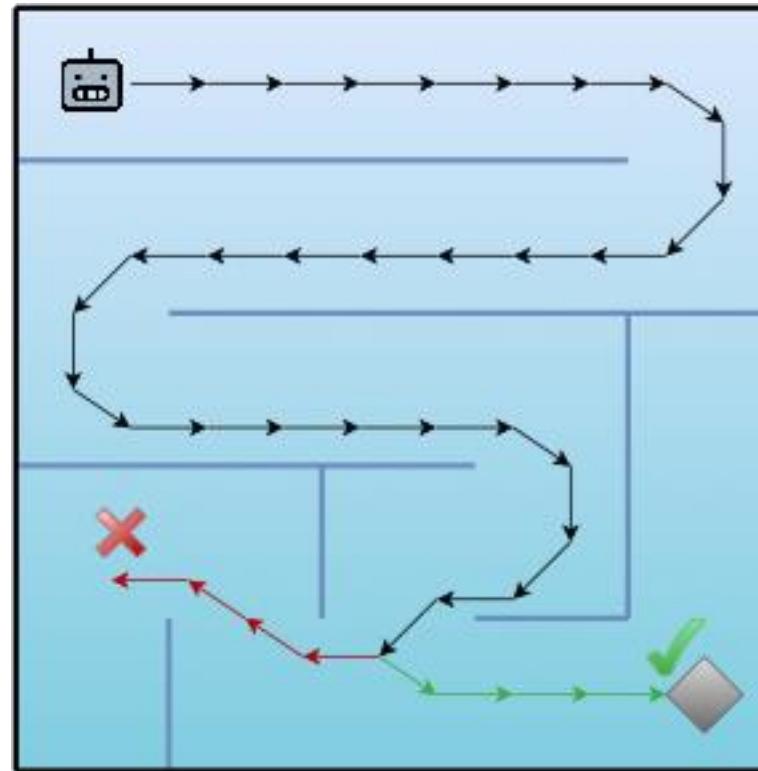


3. Understanding Visual Semantic Navigation

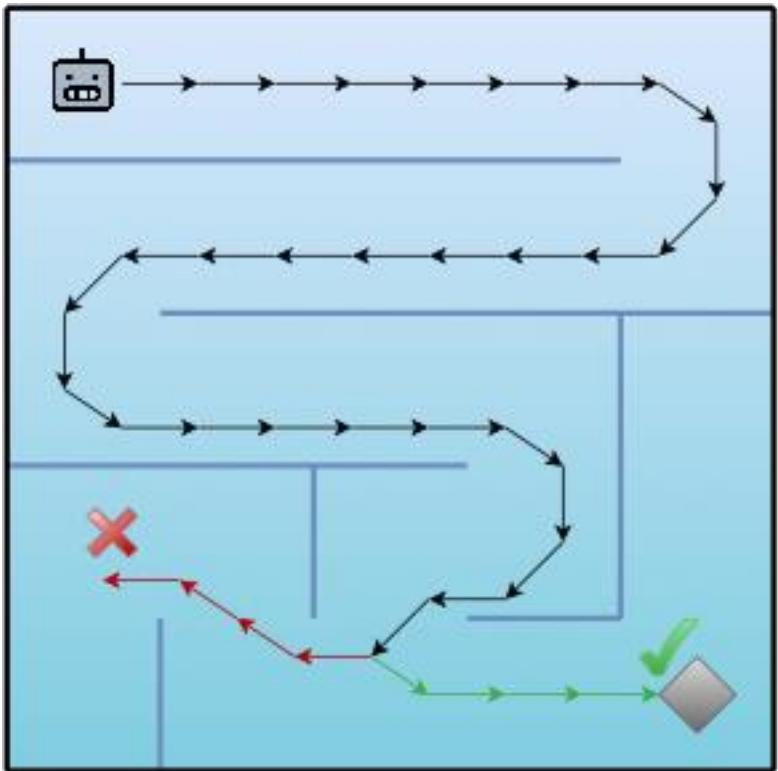
How do we train VSN agents using
reinforcement learning



Motivation



Motivation

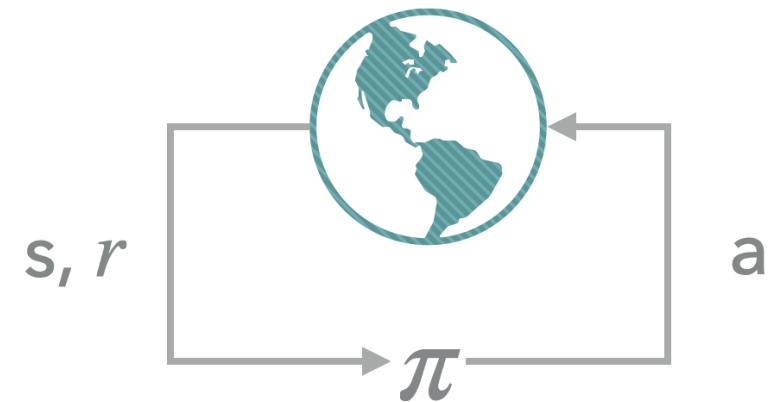
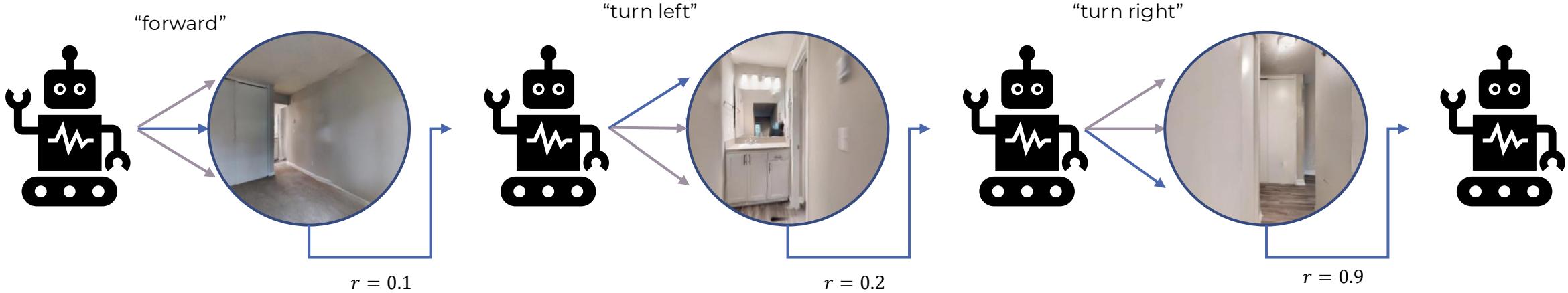


- Can an agent localize a target in an environment given just visual information?
- What are the main challenges a deep reinforcement learning agent has to overcome to successfully navigate to targets within a scene?
- First scientific problem of the thesis.

How to navigate

Reinforcement Learning with PPO

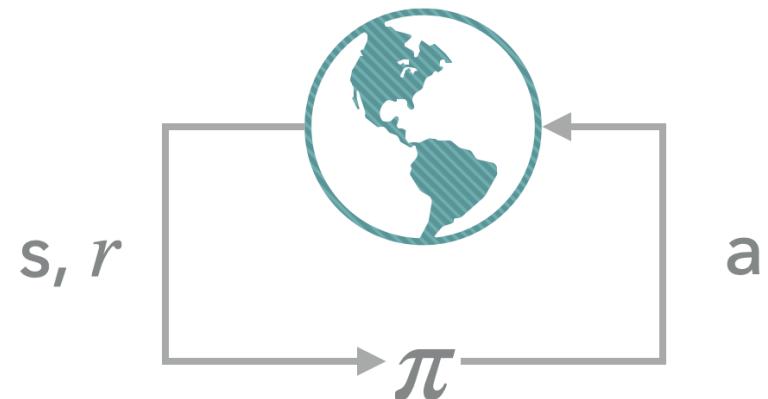
$$\pi_{\theta}^* = \operatorname{argmax}_{\pi_{\theta}} \mathbb{E}_{\mathcal{T} \sim \pi_{\theta}} \left[\sum_{t=0}^H r_{a_t} \gamma^{t-1} \right]$$



How to navigate

Reinforcement Learning with PPO

$$\pi_{\theta}^{*} = \operatorname{argmax}_{\pi_{\theta}} \mathbb{E}_{\mathcal{T} \sim \pi_{\theta}} \left[\sum_{t=0}^H r_{a_t} \gamma^{t-1} \right]$$



$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[\underbrace{L_t^{CLIP}(\theta)}_{\text{surrogate}} - \underbrace{c_1 L_t^{VF}(\theta)}_{\text{value loss}} + \underbrace{c_2 S[\pi_{\theta}](s_t)}_{\text{entropy loss}} \right]$$

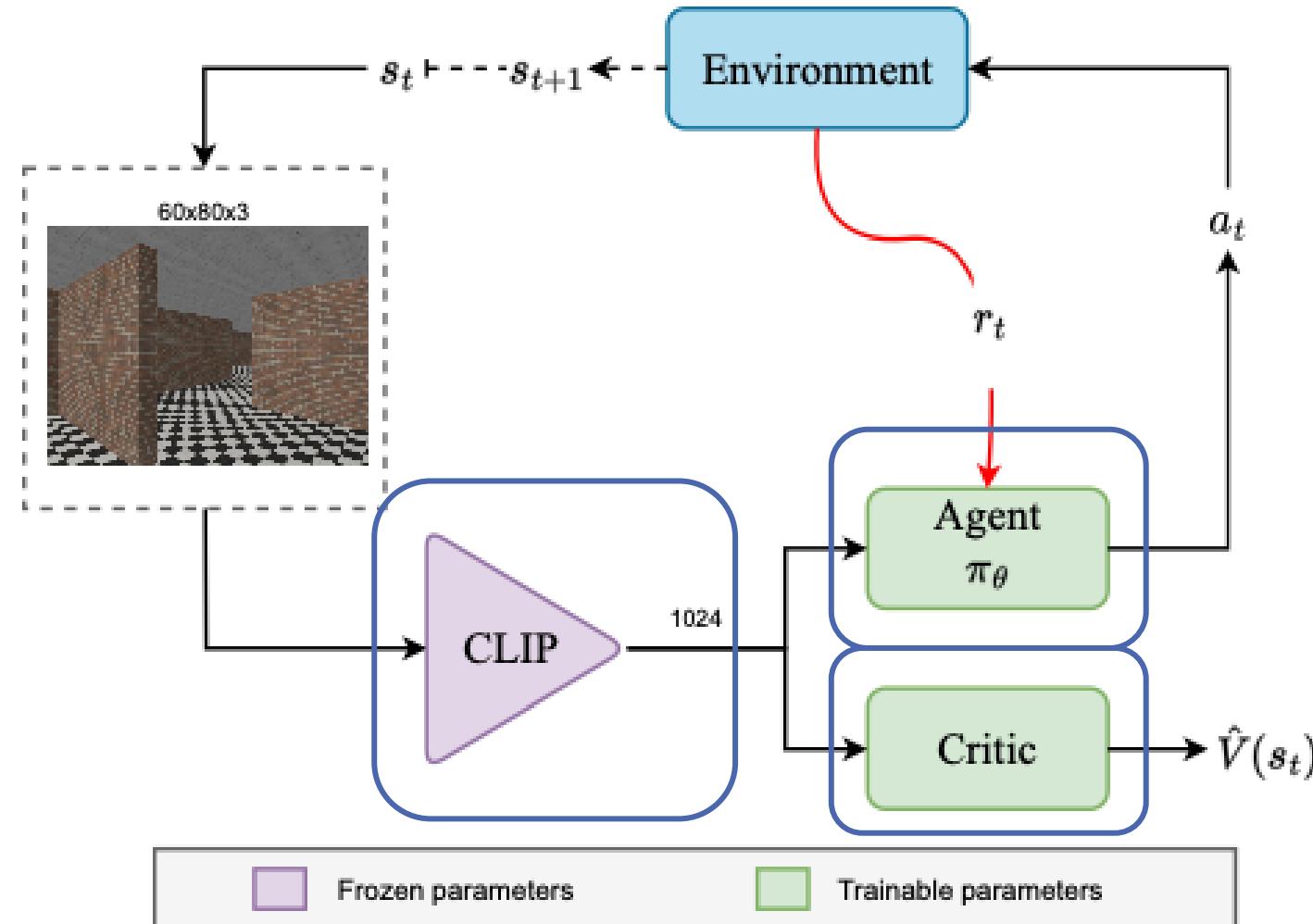
$$L_t^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

$$r_t(\theta) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}$$

$$L_t^{VF} = (V_{\theta}(s_t) - V_t^{\text{targ}})^2$$

Actor-critic:
Actor π_{θ}
Critic $V_{\theta}(s_t)$

How to navigate



Problems of RL for navigation

1. How to choose the correct reward function

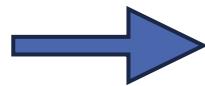
- Sparse rewards → almost no info for the agent in the environment.
- Dense rewards → gives more info to the agent but must be designed.

2. Trade off between exploration and exploitation

- Exploration is inefficient for navigation, but it has to be done in order to learn the environment.
- Exploitation let the agent use its previous knowledge of the environment to get to the target as quick as possible.

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

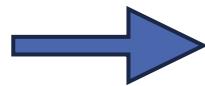
Navigation Reward

$$r_t = -r_s + r_T$$

-0.01	-0.01	-0.01	1
-0.01	-0.01	-0.01	-0.01
-0.01	-0.01	-0.01	-0.01
Robot icon	-0.01	-0.01	-0.01

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

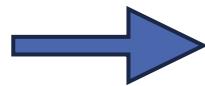
$$r_t = -r_s + r_T$$

-0.01	-0.01	-0.01	1
-0.01	-0.01	-0.01	-0.01
-0.01	-0.01	-0.01	-0.01
	-0.01	-0.01	

$$r_1 = -0,01$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

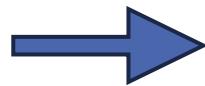
$$r_t = -r_s + r_T$$

-0.01	-0.01	-0.01	1
-0.01	-0.01	-0.01	-0.01
-0.01	-0.01	-0.01	-0.01
		Robot icon	-0.01

$$r_2 = -0,02$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

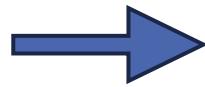
$$r_t = -r_s + r_T$$

-0.01	-0.01	-0.01	1
-0.01	-0.01	-0.01	-0.01
-0.01	-0.01	Robot	-0.01
			-0.01

$$r_3 = -0,03$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

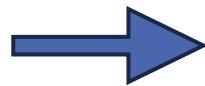
$$r_t = -r_s + r_T$$

-0.01	-0.01	-0.01	1
-0.01	-0.01	Robot icon	-0.01
-0.01	-0.01		-0.01
			-0.01

$$r_4 = -0,04$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

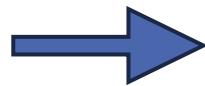
$$r_t = -r_s + r_T$$

-0.01	-0.01	1	
-0.01	-0.01		-0.01
-0.01	-0.01		-0.01
			-0.01

$$r_5 = -0,05$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

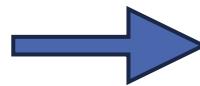
$$r_t = -r_s + r_T$$

-0.01	-0.01	
-0.01	-0.01	-0.01
-0.01	-0.01	-0.01
		-0.01

$$r_6 = 0,95$$

How to choose the correct reward

Sparse Reward



Rewards present in the environment are zero most of the time, except for when the agent reaches the target.

Navigation Reward

$$r_t = r_s + r_T$$

-0.01	-0.01		
-0.01	-0.01		-0.01
-0.01	-0.01		-0.01
			-0.01

$$r_6 = 0,95$$

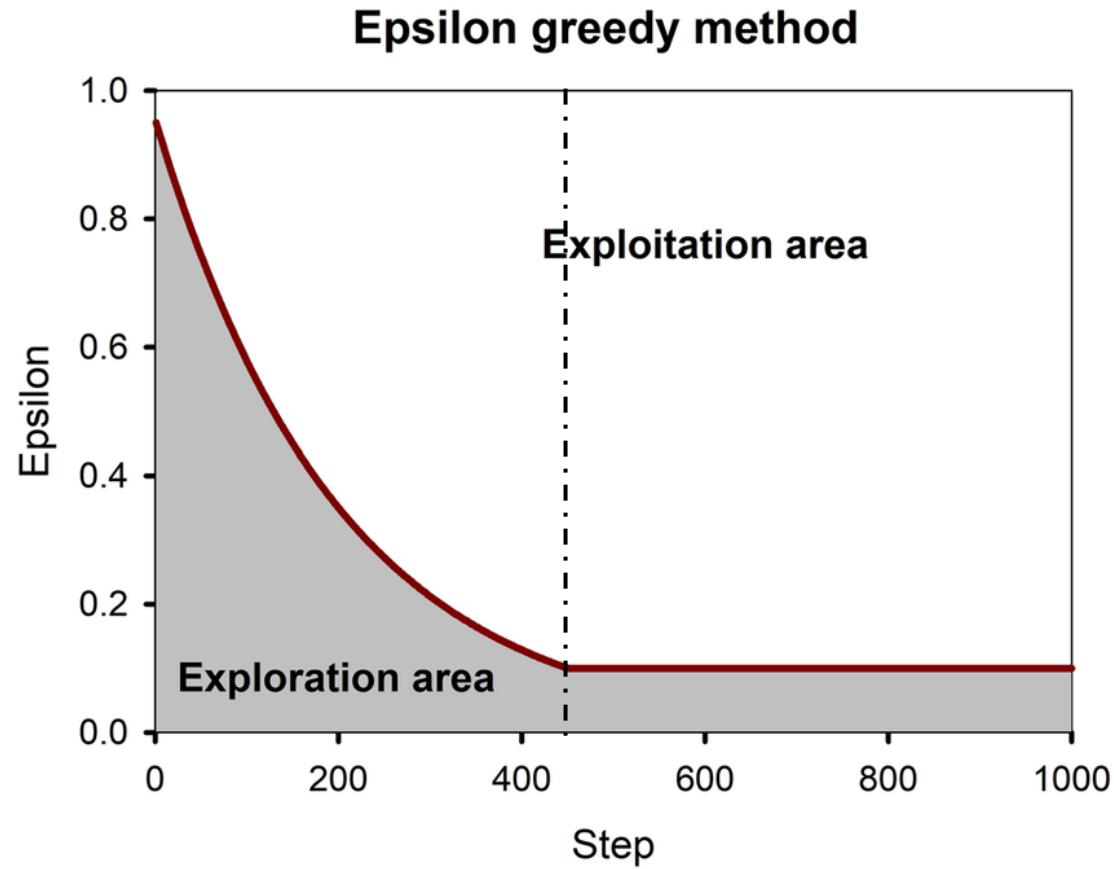
Reward Shaping

Distance Reward

$$r_t = \Delta d_{s_t} + r_s + r_T$$

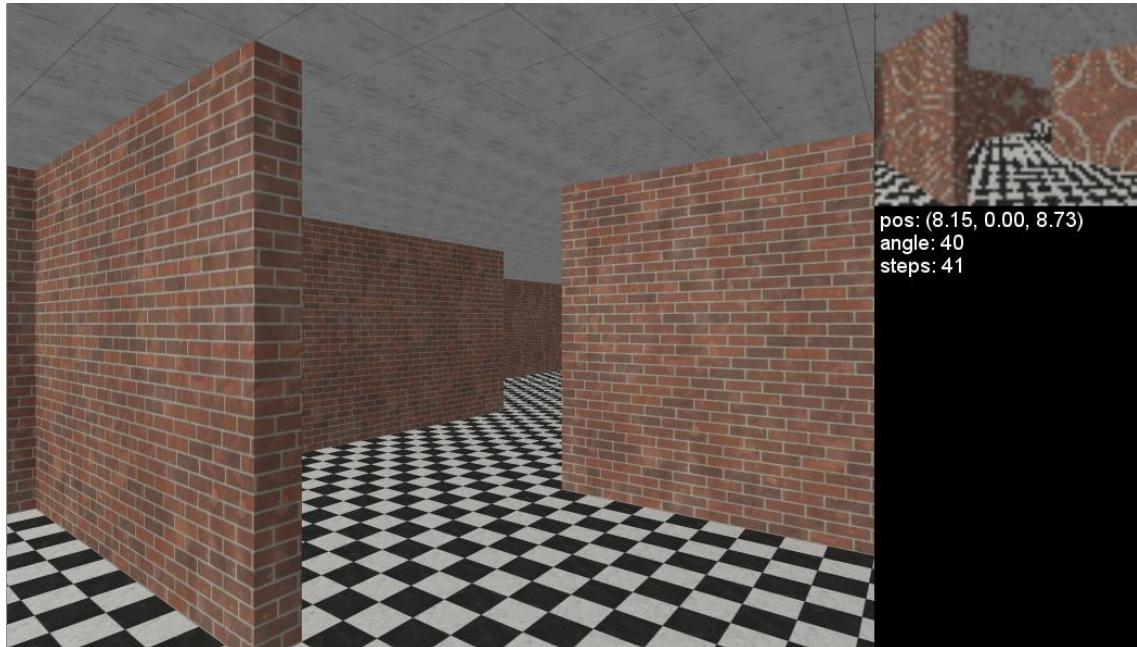
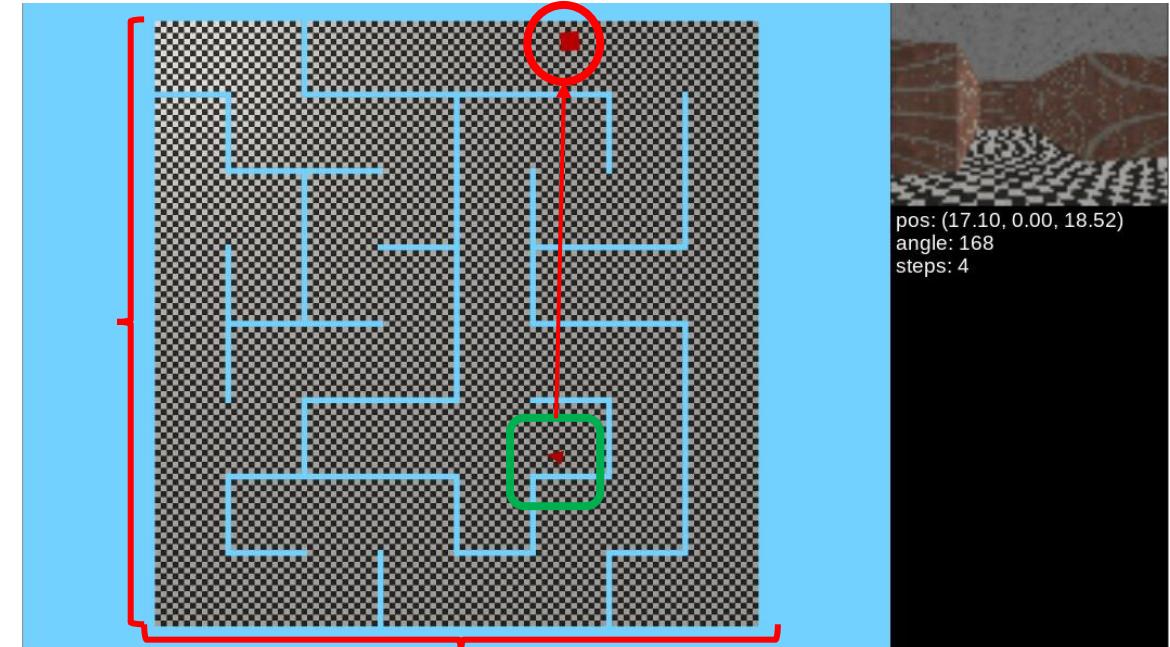
-0.01	-0.01	-0.01	1
-0.01	-0.01	-0.01	-0.01
-0.01	-0.01	-0.01	-0.01
	-0.01	-0.01	-0.01

Exploration vs Exploitation



$$a_t = \begin{cases} \operatorname{argmax} \pi_\theta & \text{with probability } 1 - \varepsilon \\ \text{rand}(a) \in \mathcal{A} & \text{with probability } \varepsilon \end{cases}$$

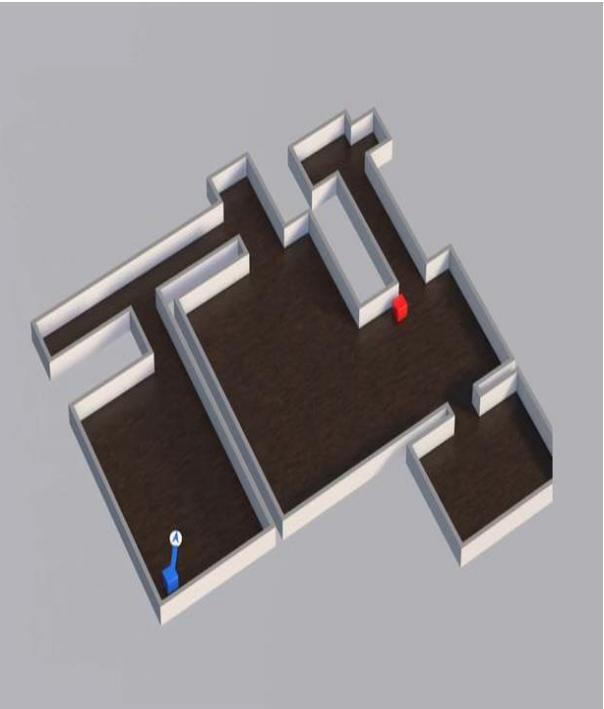
Experimental setup



We use two Maze sizes:

- **S3**: 3x3 tiling.
- **S5**: 5x5 tiling.

Experimental setup



Experimental setup

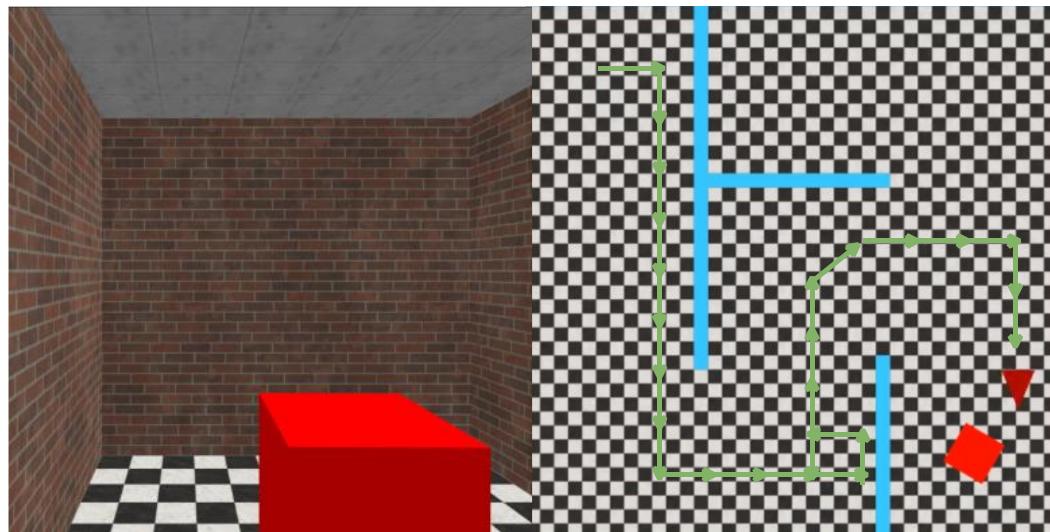
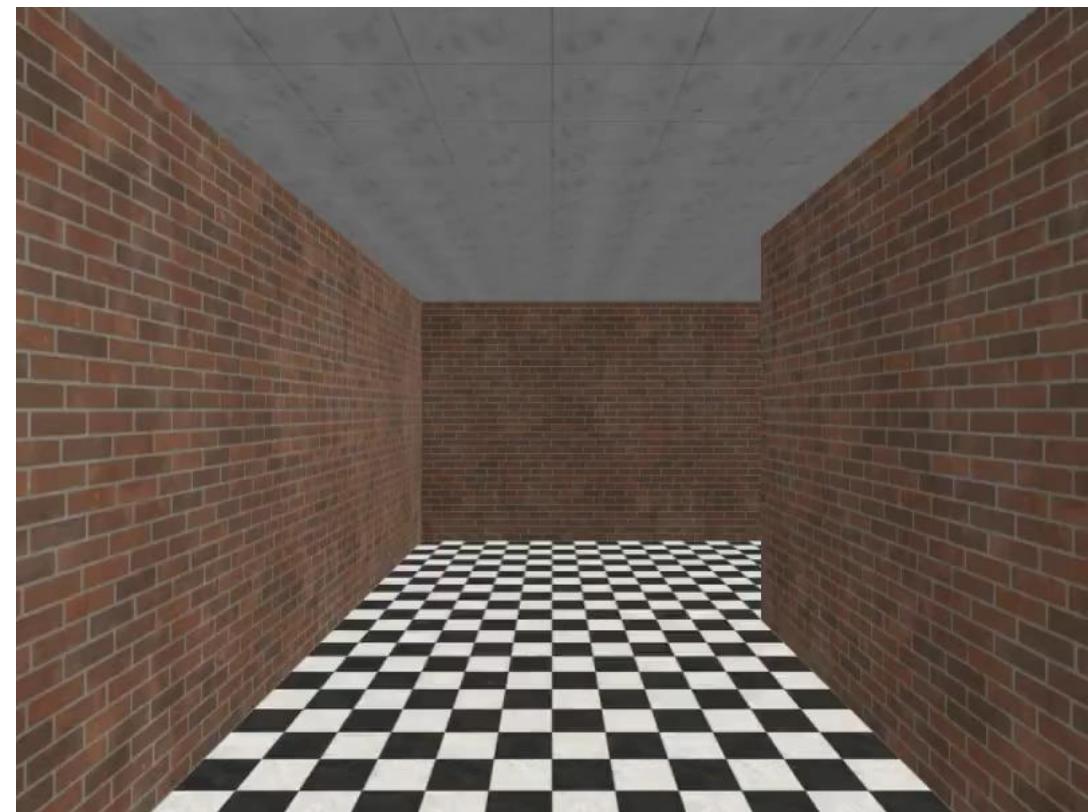
- **Simulators:** Miniworld-Maze and AI Habitat.
- **Task:** Find target in novel indoor environments.
- **Dataset:** HM3D for AI Habitat.
- **Action space:**
 - Move forward, turn left and turn right for Miniworld-Maze.
 - The previous ones plus look_up and look_down for AI Habitat.
- **Metrics:**
 - Success Rate (SR)
 - Steps Per Episode (SPE)
 - Shortest Path Length (SPL)
 - Distance To Goal (DTG)

Miniworld Maze results

Output type	Maze	SR	SPE	Reward
Ours + ϵ -greedy	<i>S</i> 3	0.75 \pm 0.44	120.59 \pm 111.85	6.80 \pm 2.29
	<i>S</i> 5	0.18 \pm 0.38	534.40 \pm 130.20	5.24 \pm 5.73
Ours + <i>stochastic</i>	<i>S</i> 3	0.63 \pm 0.49	127.42 \pm 132.98	6.59 \pm 2.41
	<i>S</i> 5	0.17 \pm 0.38	521.39 \pm 182.66	5.14 \pm 5.70
<i>random</i>	<i>S</i> 3	0.18 \pm 0.39	278.04 \pm 51.55	0.37 \pm 3.66
	<i>S</i> 5	0.02 \pm 0.14	596.07 \pm 32.83	-2.09 \pm 4.06

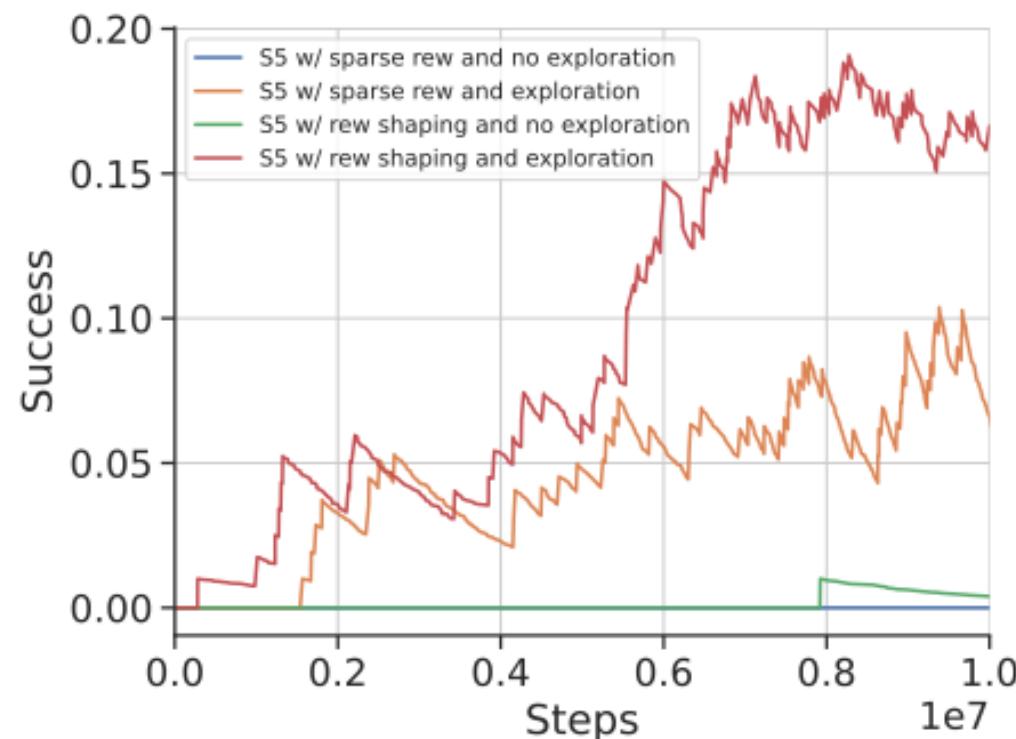
Miniworld Maze results

Output type	Maze	SR	SPE	Reward
Ours + ϵ -greedy	S3	0.75 ± 0.44	120.59 ± 111.85	6.80 ± 2.29
	S5	0.18 ± 0.38	534.40 ± 130.20	5.24 ± 5.73
Ours + stochastic	S3	0.63 ± 0.49	127.42 ± 132.98	6.59 ± 2.41
	S5	0.17 ± 0.38	521.39 ± 182.66	5.14 ± 5.70
random	S3	0.18 ± 0.39	278.04 ± 51.55	0.37 ± 3.66
	S5	0.02 ± 0.14	596.07 ± 32.83	-2.09 ± 4.06



Ablation study

Reward function	Exploration strategy	SR	SPE	Reward
<i>distance reward</i>	ϵ -greedy	0.18 ± 0.38	534.40 ± 130.20	5.24 ± 5.73
<i>navigation reward</i>	ϵ -greedy	0.09 ± 0.29	575.86 ± 91.94	0.08 ± 0.26
<i>distance reward</i>	No	0.02 ± 0.14	588.66 ± 79.78	-1.24 ± 4.18
<i>navigation reward</i>	No	0.00 ± 0.00	600.00 ± 0.00	0.00 ± 0.00

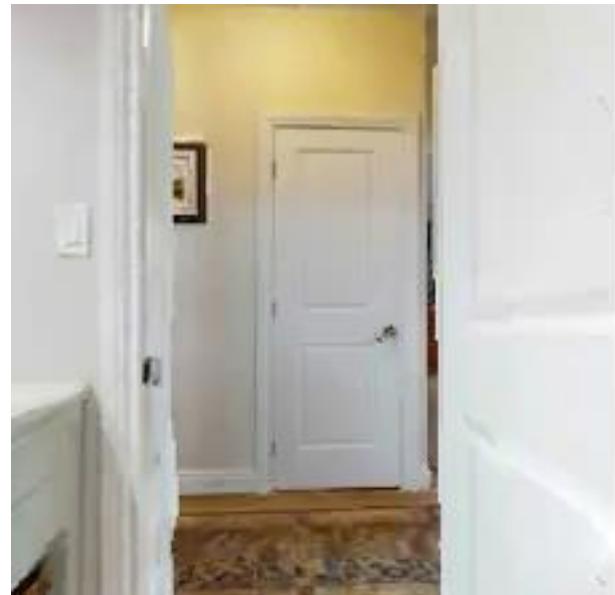


Habitat HM3D results

Output type	SR	SPL	DTG	SPE	Reward
Best agent + ϵ -greedy	0.96 ± 0.19	0.66 ± 0.25	0.25 ± 0.85	189.99 ± 116.97	4.96 ± 1.99
Best agent + <i>stochastic random</i>	0.73 ± 0.45	0.58 ± 0.36	0.63 ± 1.17	231.23 ± 188.13	3.52 ± 3.90
	0.05 ± 0.22	0.02 ± 0.10	4.49 ± 1.72	495.50 ± 26.96	-4.68 ± 2.16

Habitat HM3D results

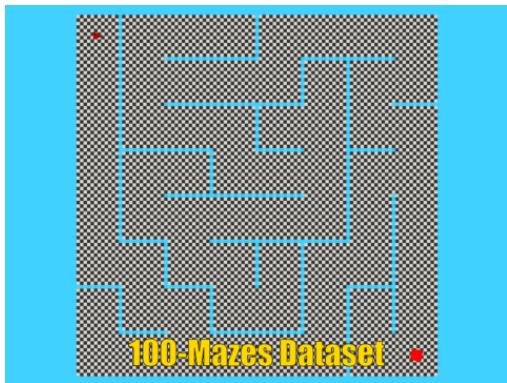
Output type	SR	SPL	DTG	SPE	Reward
Best agent + ϵ -greedy	0.96 ± 0.19	0.66 ± 0.25	0.25 ± 0.85	189.99 ± 116.97	4.96 ± 1.99
Best agent + <i>stochastic random</i>	0.73 ± 0.45	0.58 ± 0.36	0.63 ± 1.17	231.23 ± 188.13	3.52 ± 3.90
	0.05 ± 0.22	0.02 ± 0.10	4.49 ± 1.72	495.50 ± 26.96	-4.68 ± 2.16



Mirara a ve
Si tengo
Mas videos

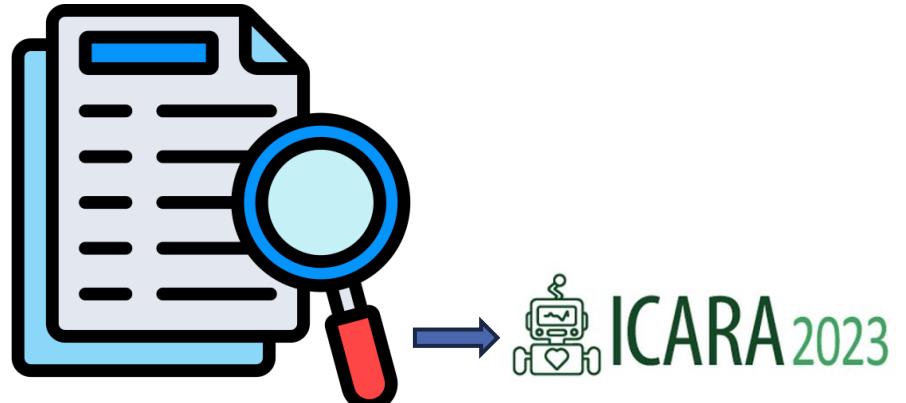
Conclusions

- First paper on VSN and RL.
- Developed a state-of-the-art VSN that can navigate in different environments.
- Release of a collection of 100 mazes dataset.



- Code available in github.

Associated paper:



Towards Clear Evaluation of Robotic Visual Semantic Navigation, 2023

Gutiérrez-Alvarez C., Hernández-García S., Nasri N.,
Cuesta-Infante Alfredo, López-Sastre R.J.

4. Real World VSN

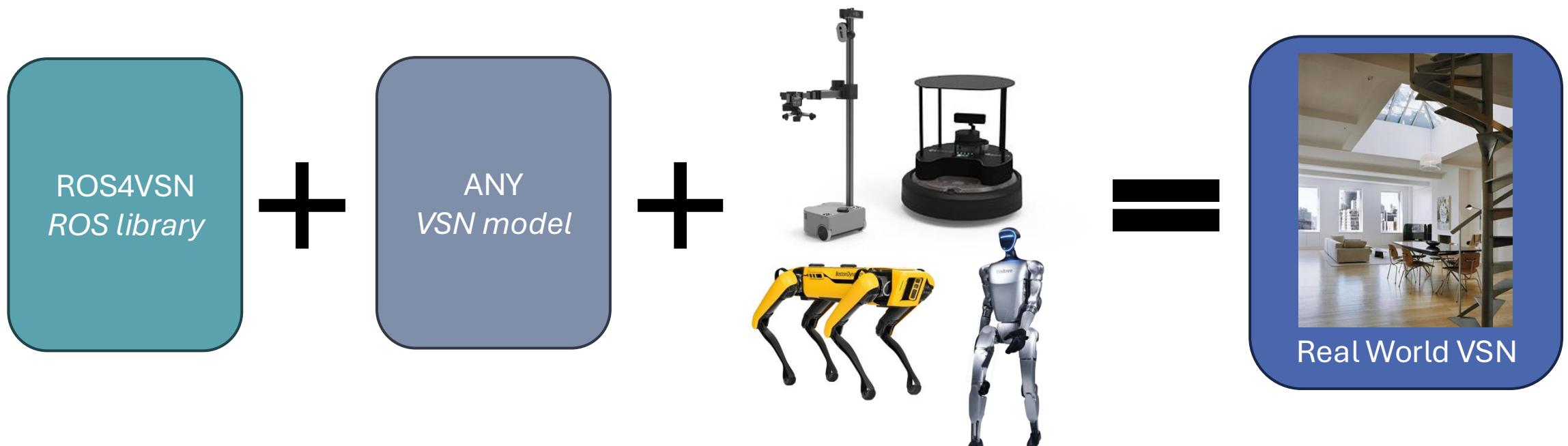
How actual VSN algorithms behave in the real world

Motivation

Can a **robotic agent** navigate and interact in the **real world** as in **simulation**?

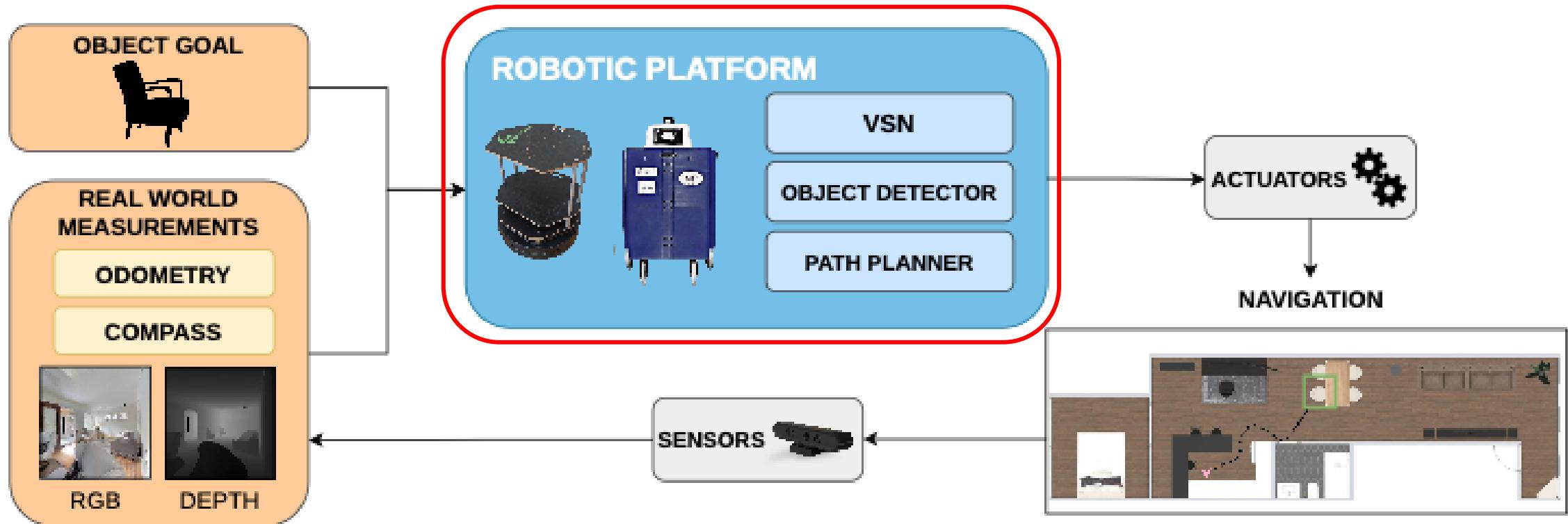
Motivation

Can a **robotic agent** navigate and interact in the **real world** as in **simulation**?

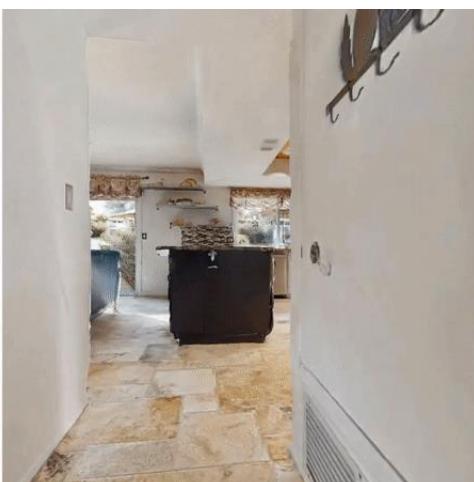
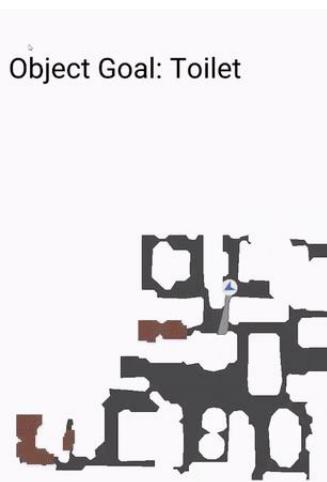
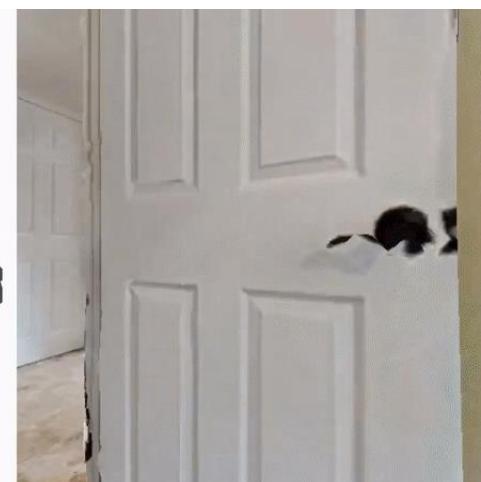


Real World VSN with ROS4VSN

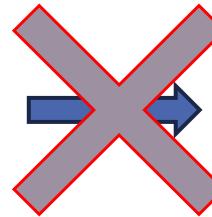
Novel *ROS library* to study how *VSN algorithms* behave in the real world



The core problem



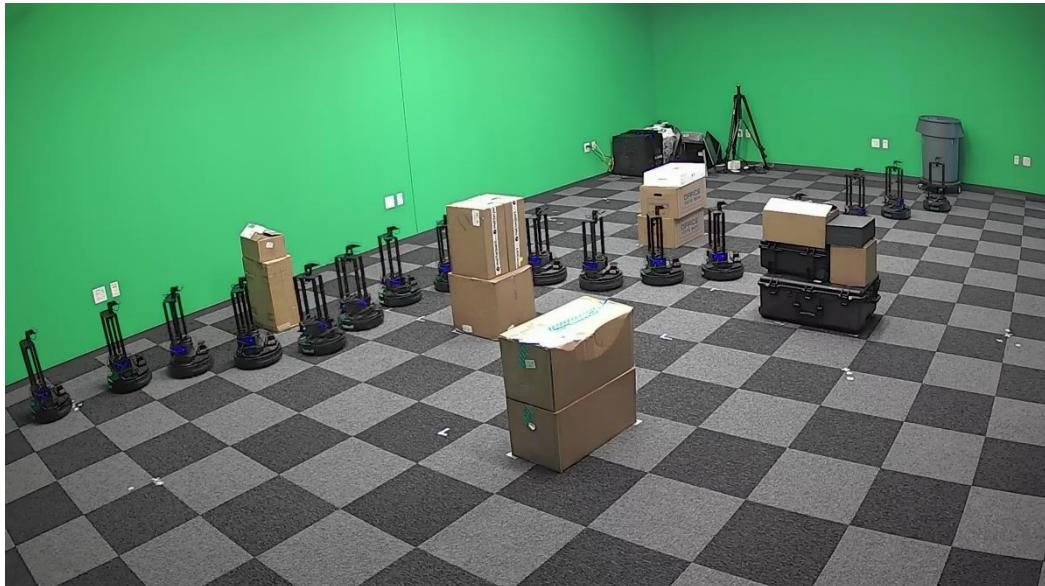
The core problem



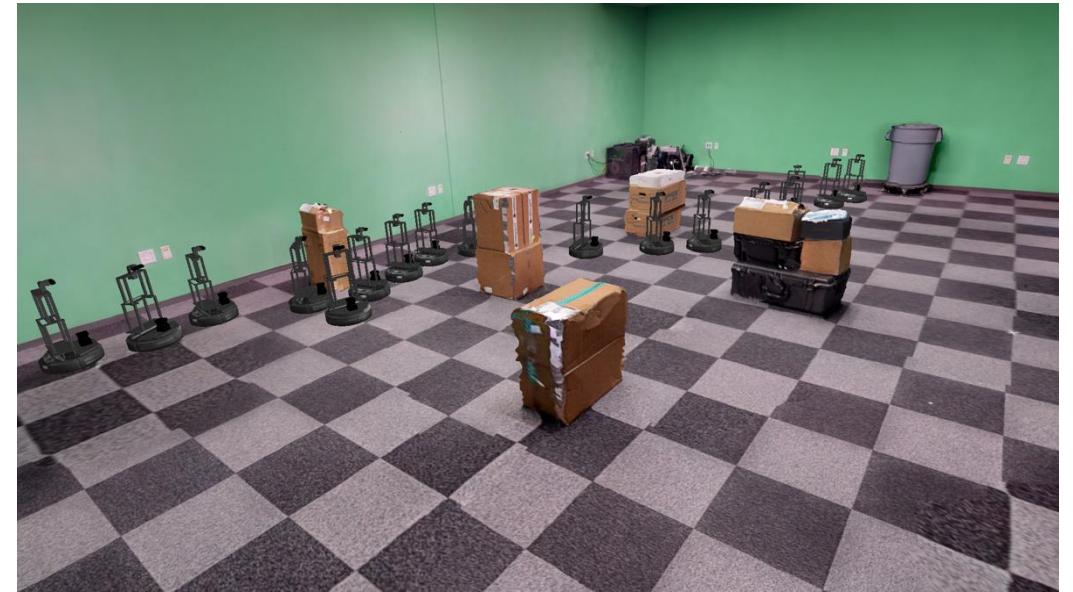
Why simulation is not enough

RGB Domain Gap

Real world

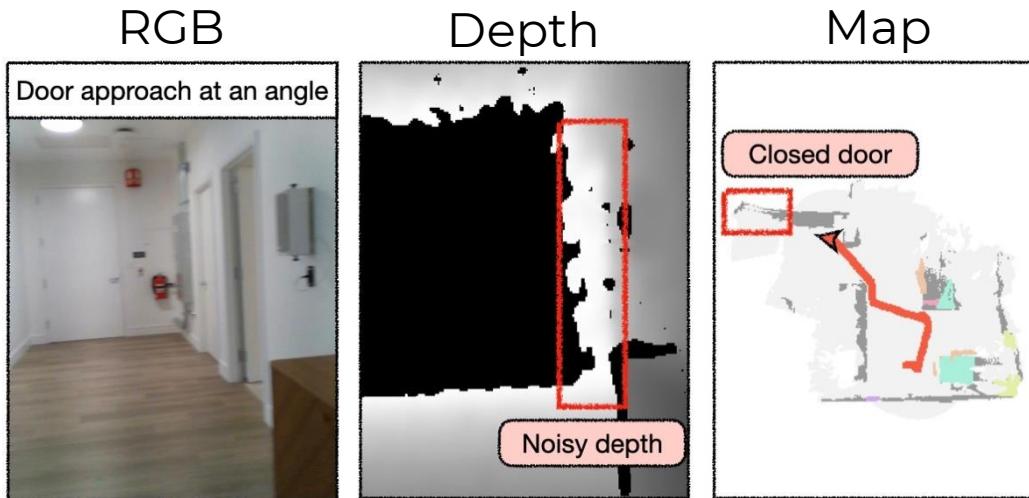
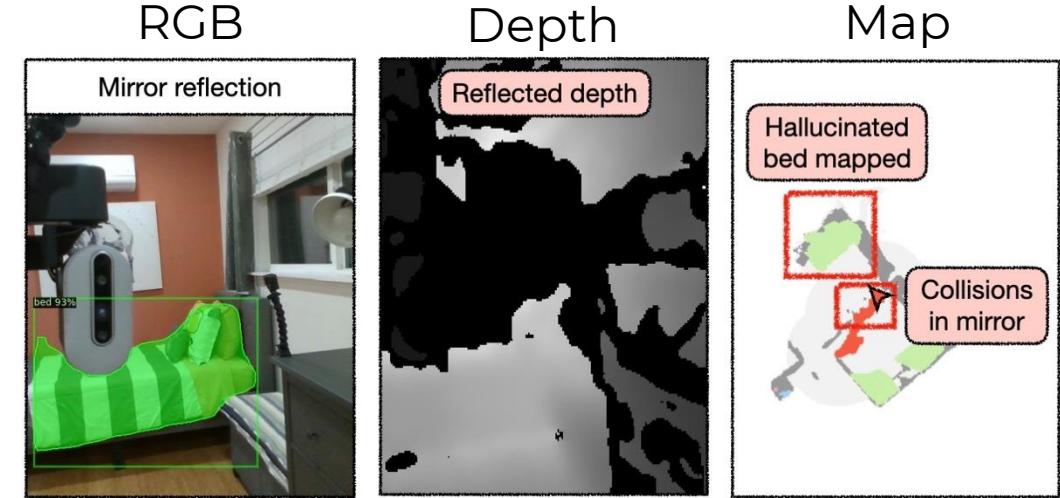
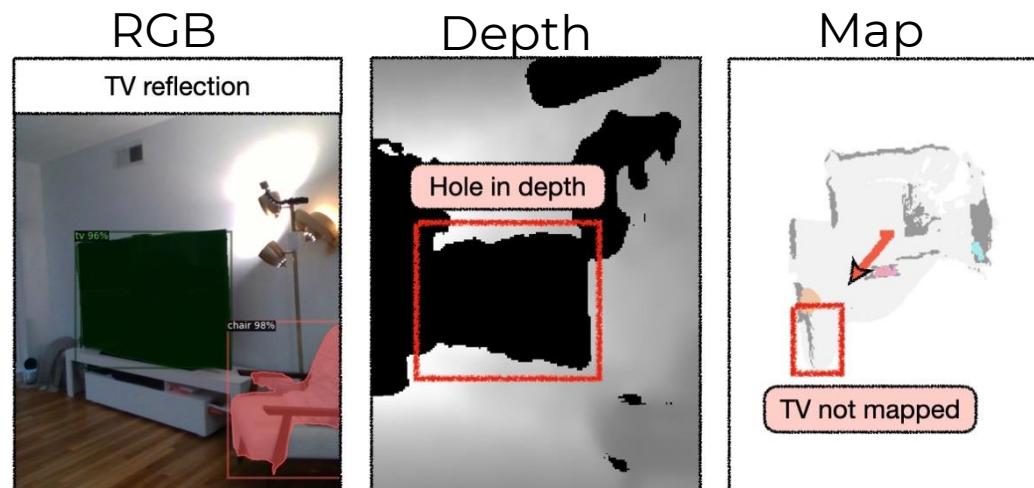


Simulation



Why simulation is not enough

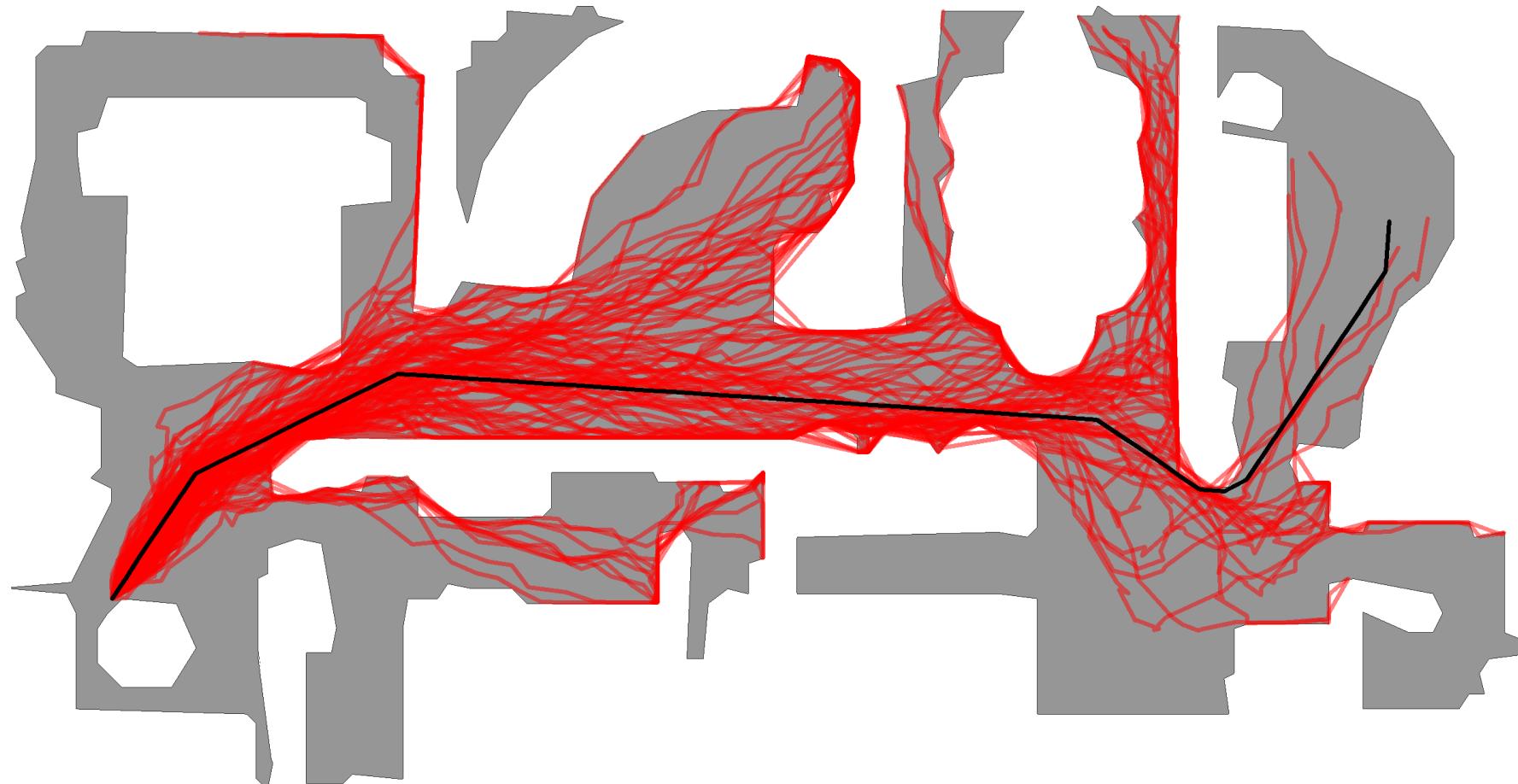
Depth Domain Gap



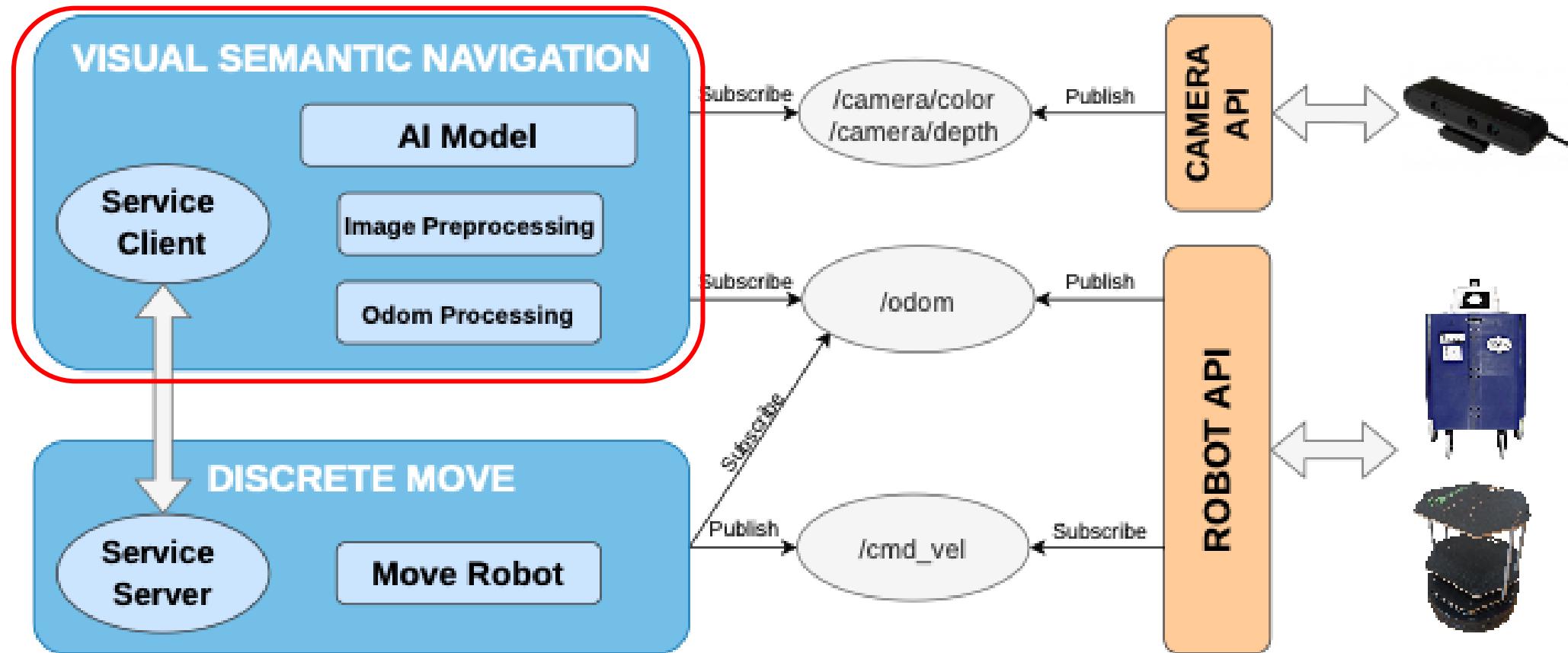
* Images from Gervert et.al 2023 80

Why simulation is not enough

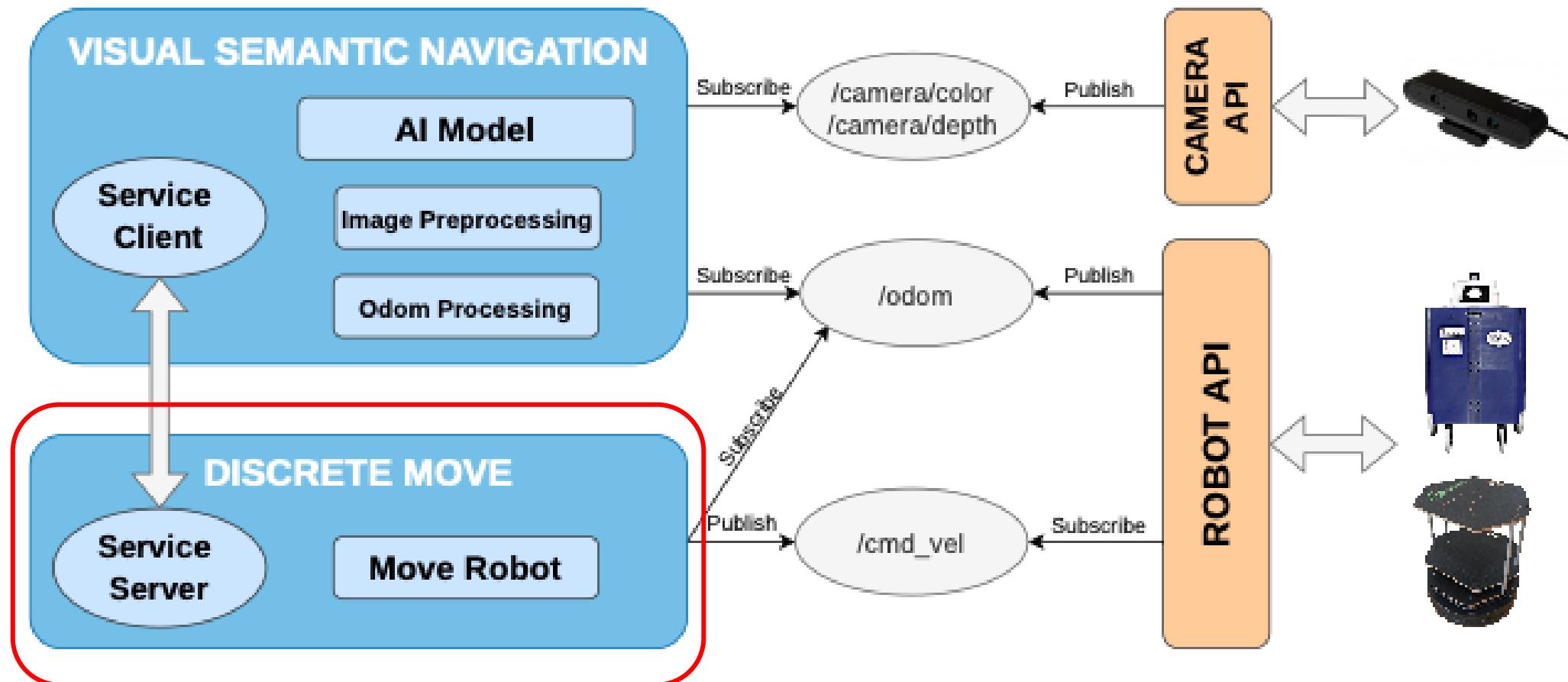
Actuators Domain Gap



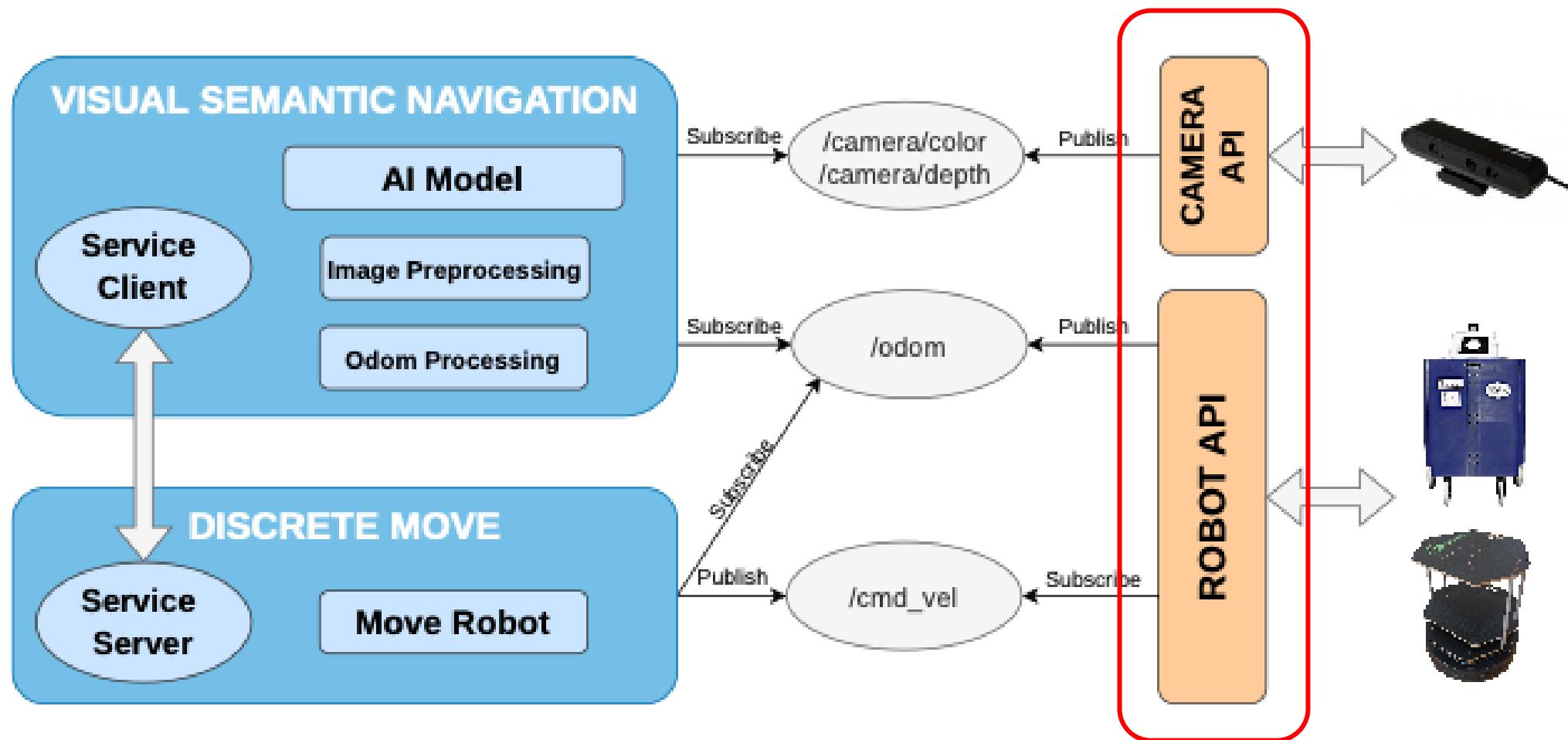
ROS4VSN: System architecture



ROS4VSN: System architecture

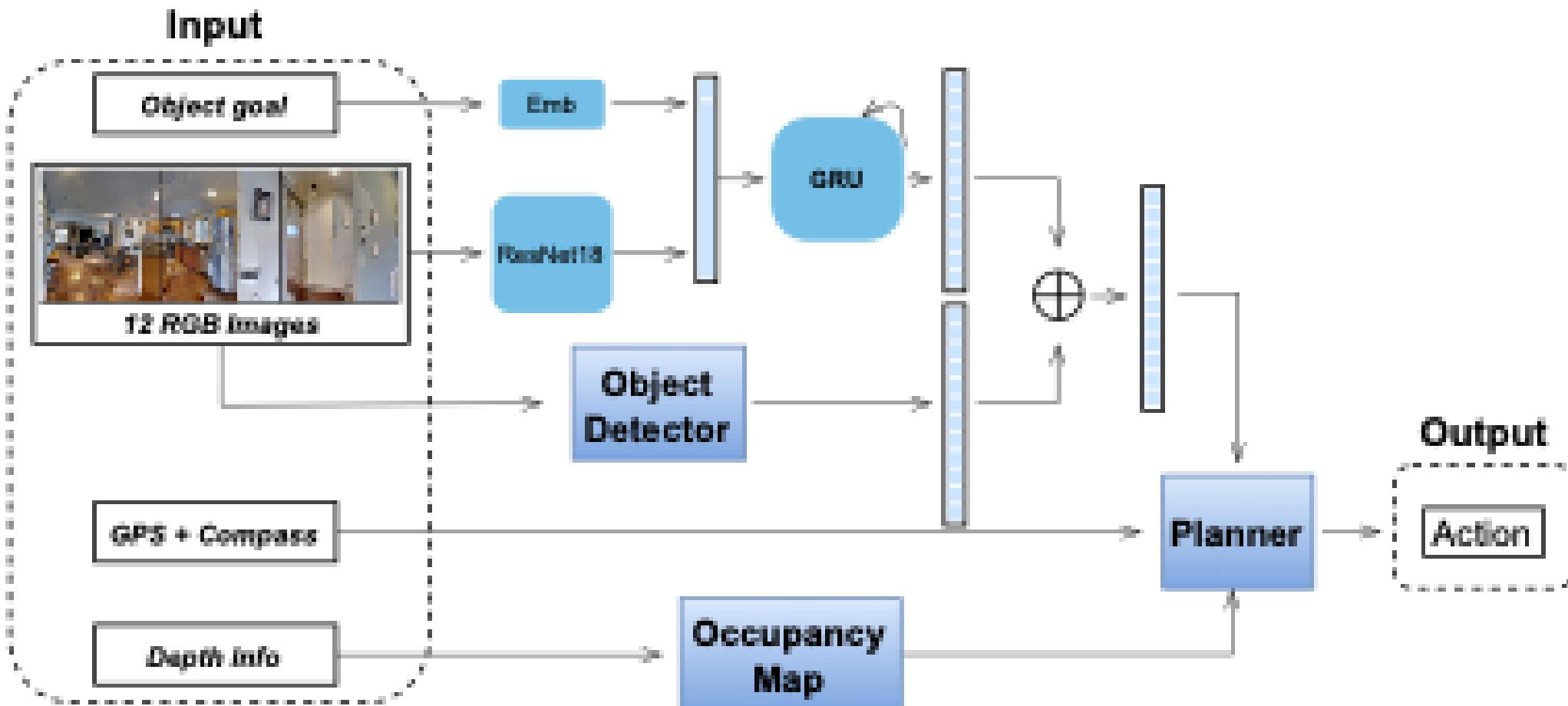


ROS4VSN: System architecture



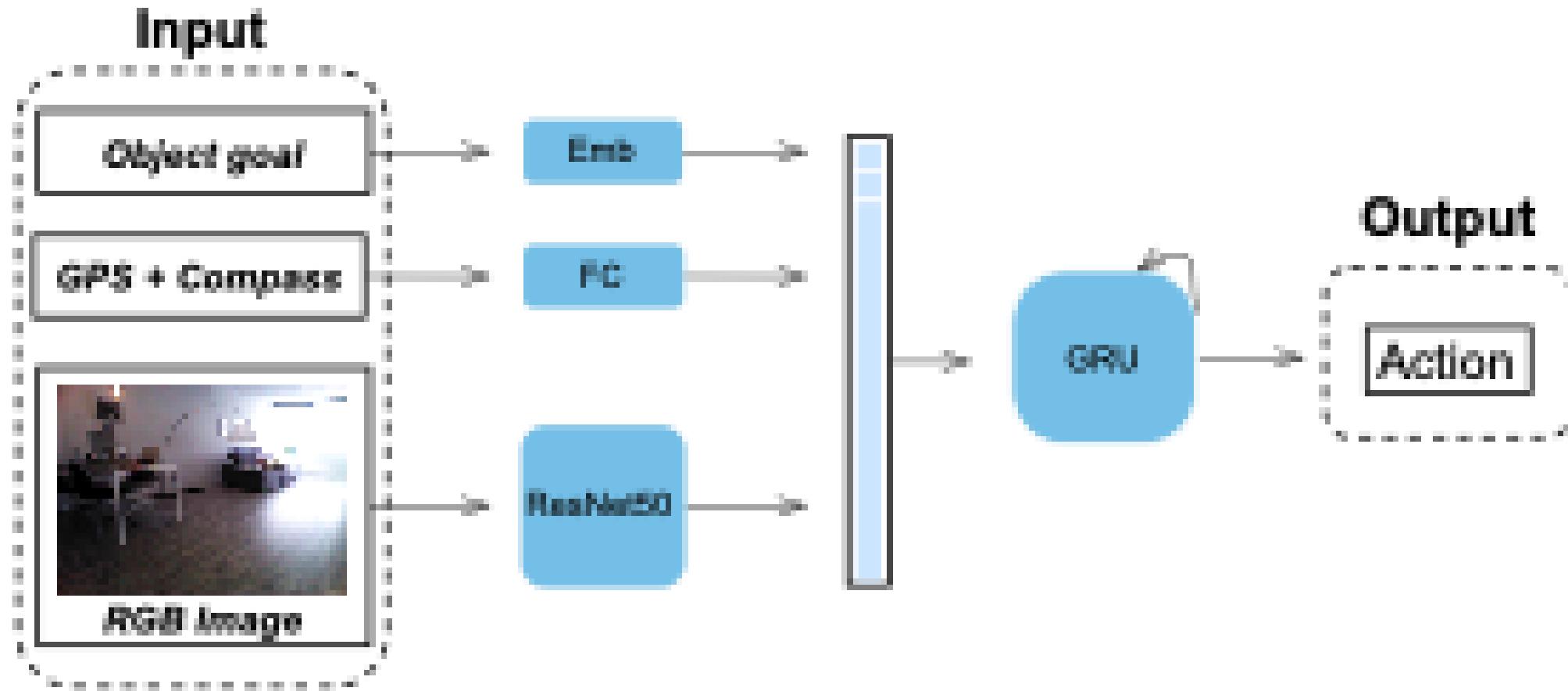
VSN Models Integrated

VLV – Modular learning – Chang et.al 2020

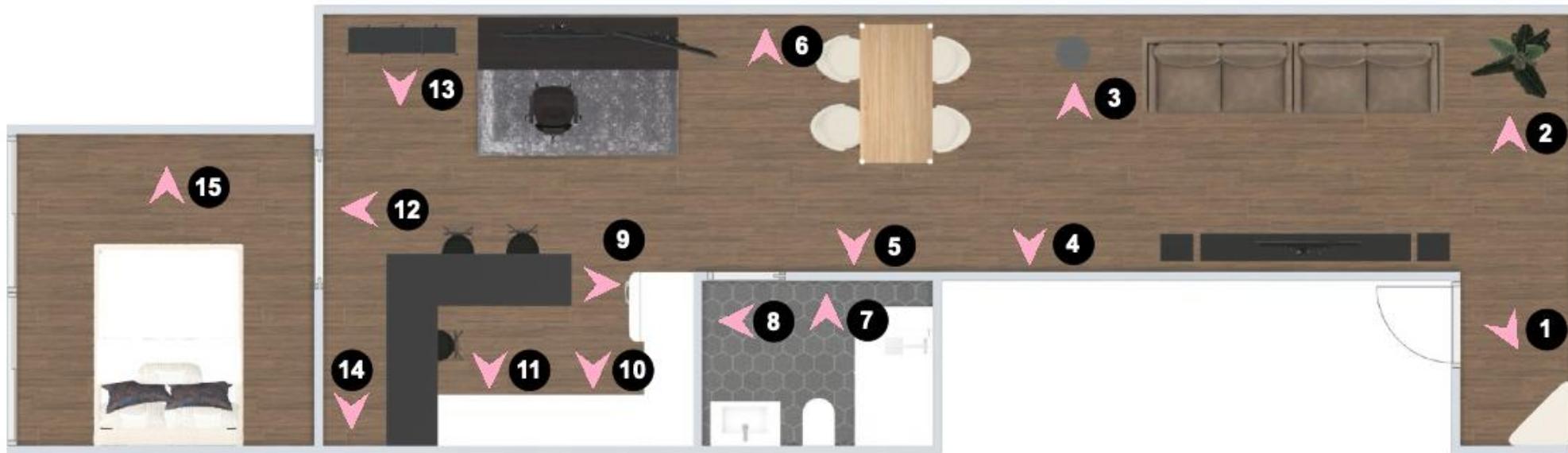


VSN Models Integrated

PIRLNAV – End-to-end learning – Ramrakhya et.al 2023



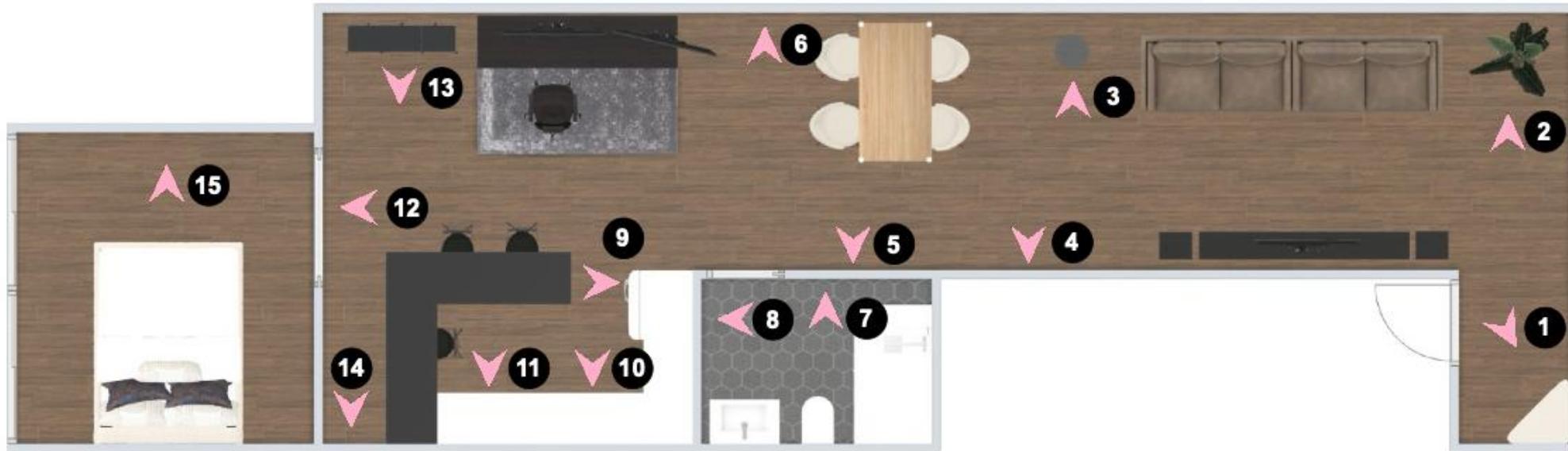
Real world experimental setup



Object Goal

Chair
Sofa
Table
Bed
Toilet

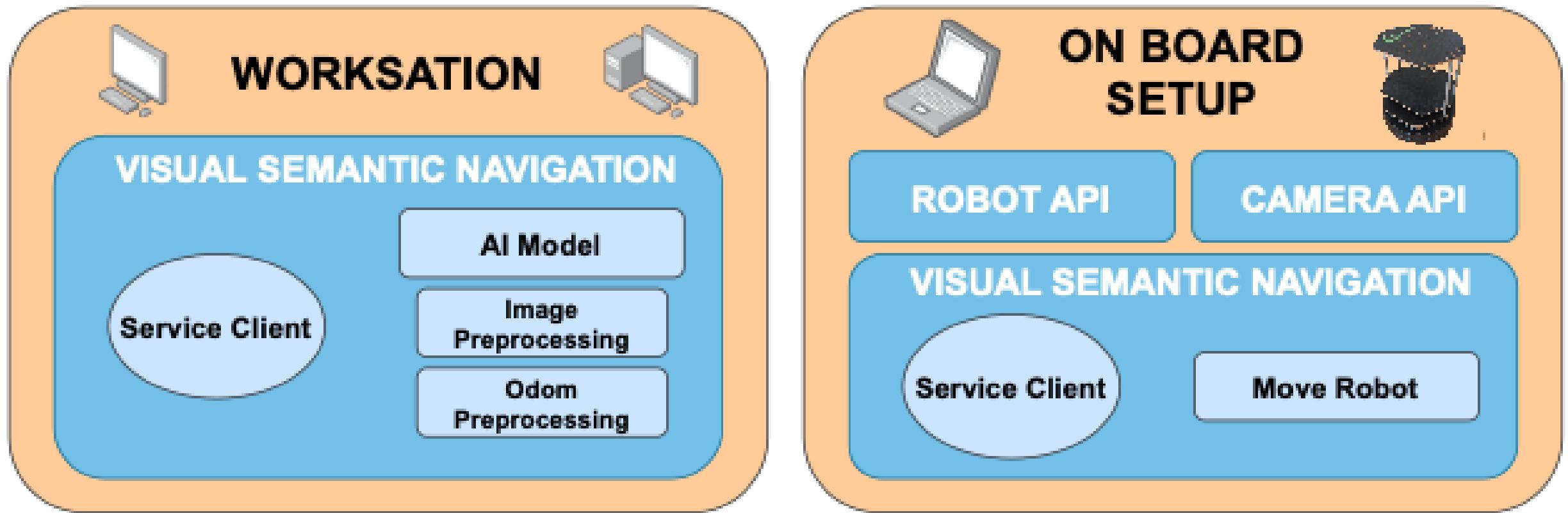
Real world experimental setup



Object Goal

Chair
Sofa
Table
Bed
Toilet

Real world experimental setup



VLV real world results

**Experiments with VSN
Model VLV**

VLV real world results

<i>Object Goal</i>	<i>Successful episodes</i>	SR	<i>Avg. number of actions</i>
Chair	6/15	40%	30
Sofa	6/15	40%	65
Table	6/15	40%	42
Bed	3/15	20%	39
Toilet	1/15	6,67%	42

**Experiments with VSN
Model VLV**

PIRLNav real world results

**Experiment Success
with Model PIRLNav**

Target: Sofa

PIRLNav real world results

Object Goal	Successful episodes	SR	Avg. number of actions
Chair	5/15	33,33%	49
Monitor	5/15	33,33%	91
Sofa	5/15	33,33%	70
Bed	3/15	20,00%	97
Toilet	1/15	6,67%	61
Plant	0/15	0,00%	82

**Experiment Success
with Model PIRLNav**

Target: Sofa

The big numbers

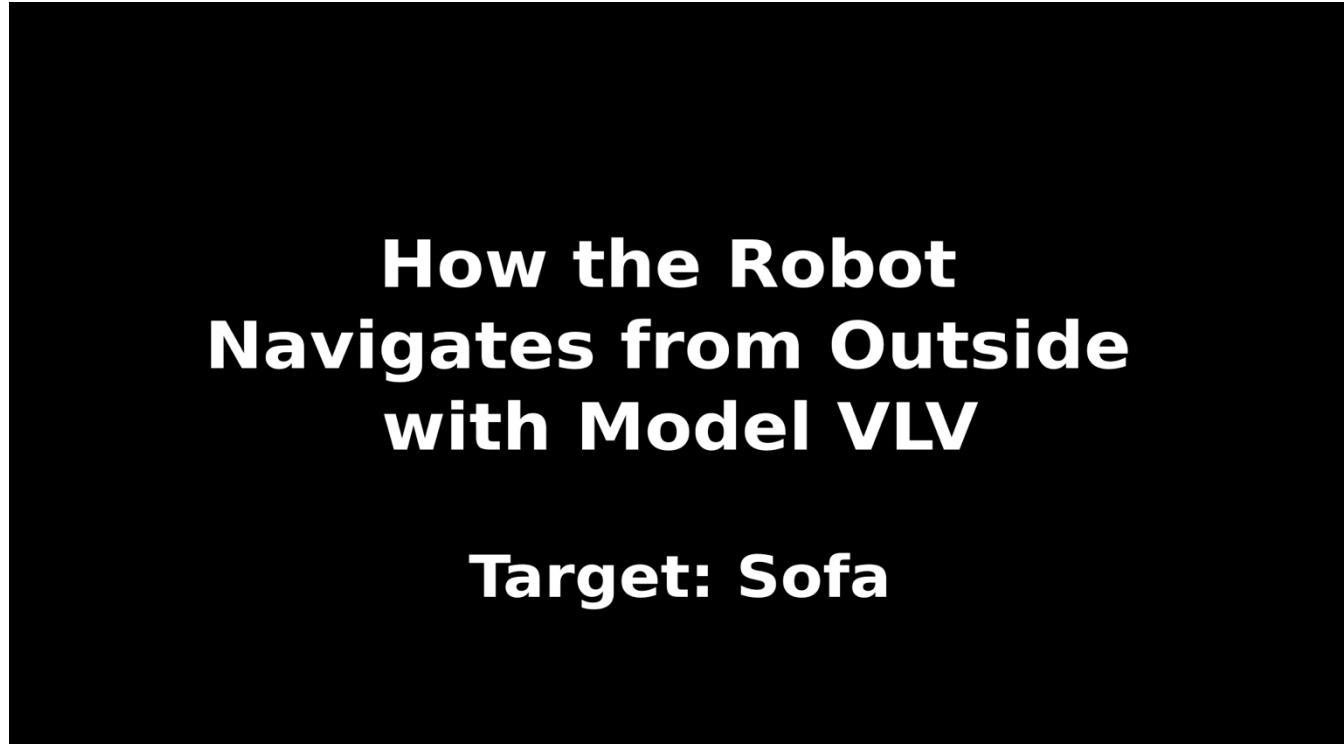
The success rate of end-to-end learning is greater in sim, but it suffers a larger performance drop in the real world

Models	SR (Real World)	SR (Virtual Environment)
VLV [31]	29.33%	39%
PIRLNAV [45]	21.11%	65%

The big numbers

The success rate of end-to-end learning is greater in sim, but it suffers a larger performance drop in the real world

Models	SR (Real World)	SR (Virtual Environment)
VLV [31]	29.33%	39%
PIRLNAV [45]	21.11%	65%



**How the Robot
Navigates from Outside
with Model VLV**

Target: Sofa

Conclusions

- Developed a new ROS robotic framework for deploying VSN algorithms in the real world in any robot.
- The ROS4VSN library is very stable with more than 38h and 5km of operation.
- Modular learning wins end-to-end learning in real-world.
- There is still a lot of room for improvement on VSN algorithms to work in the real world.
- Code available in github.

Associated publications:

Visual Semantic Navigation with Real Robots, 2025

Gutiérrez-Alvarez C., Ríos-Navarro P., Flor-Rodríguez-Rabadán R., Avecedo-Rodríguez FJ., López-Sastre RJ.



IROS late braking results

Evaluation of Visual Semantic Navigation Models in Real Robots, 2023

Gutiérrez-Alvarez C., Ríos-Navarro P., Flor-Rodríguez-Rabadán R., Avecedo-Rodríguez FJ., López-Sastre RJ.

5. Bridging the gap

Strategies to go easier from simulation *to the real world*

How to bridge the gap

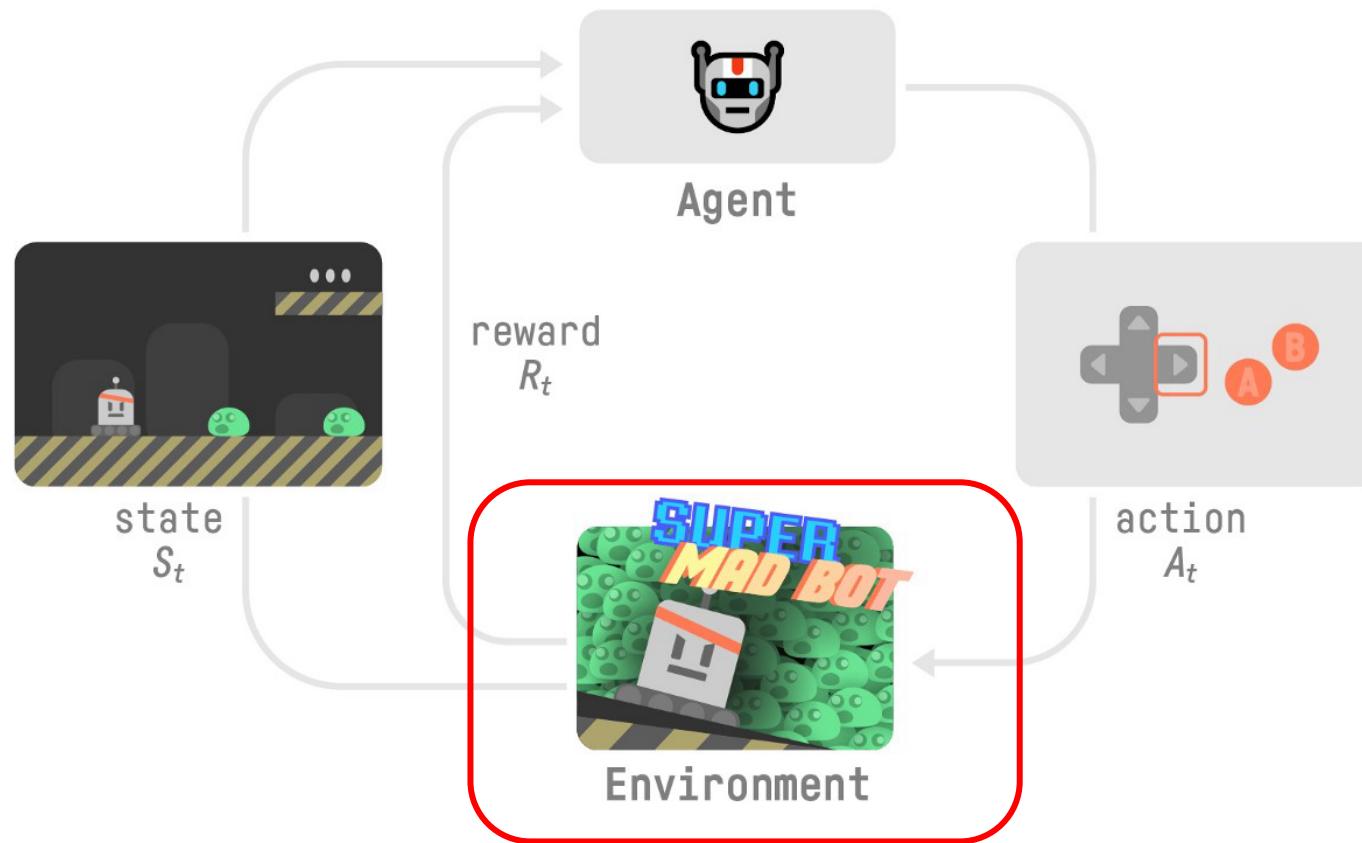
1. How to do RL with real world data

- Can we use offline RL to train policies that are able to navigate?

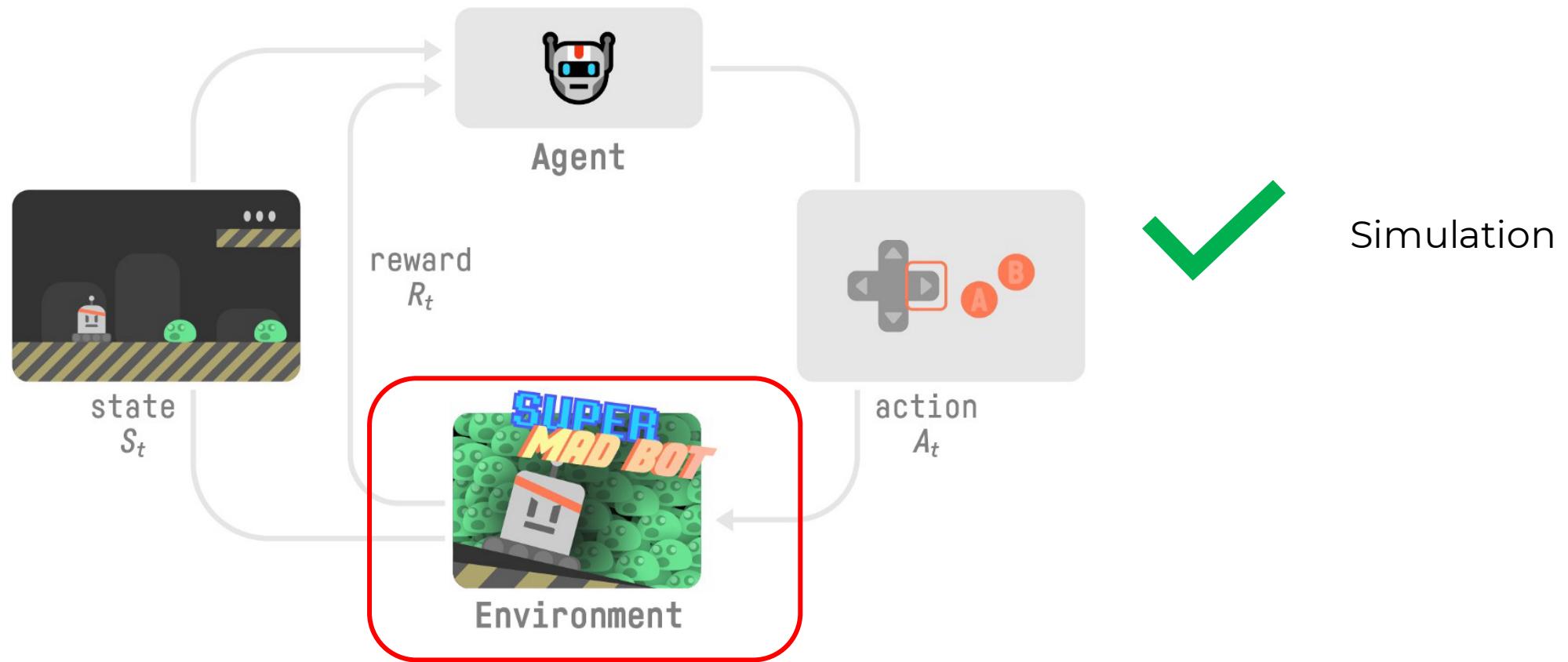
2. How to learn to navigate from a few examples

- Can we train meta-algorithms capable of navigate in new environments with few navigation trajectories?

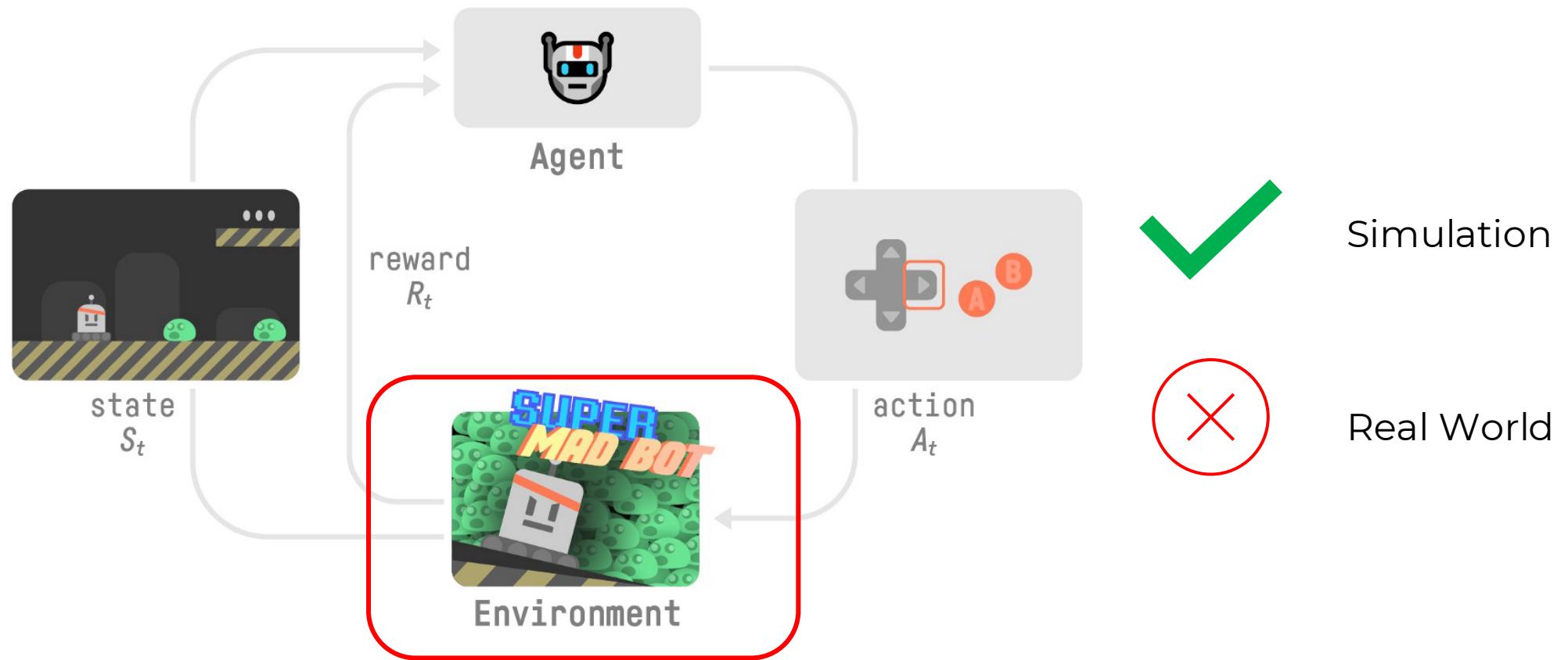
Why standard RL is not enough



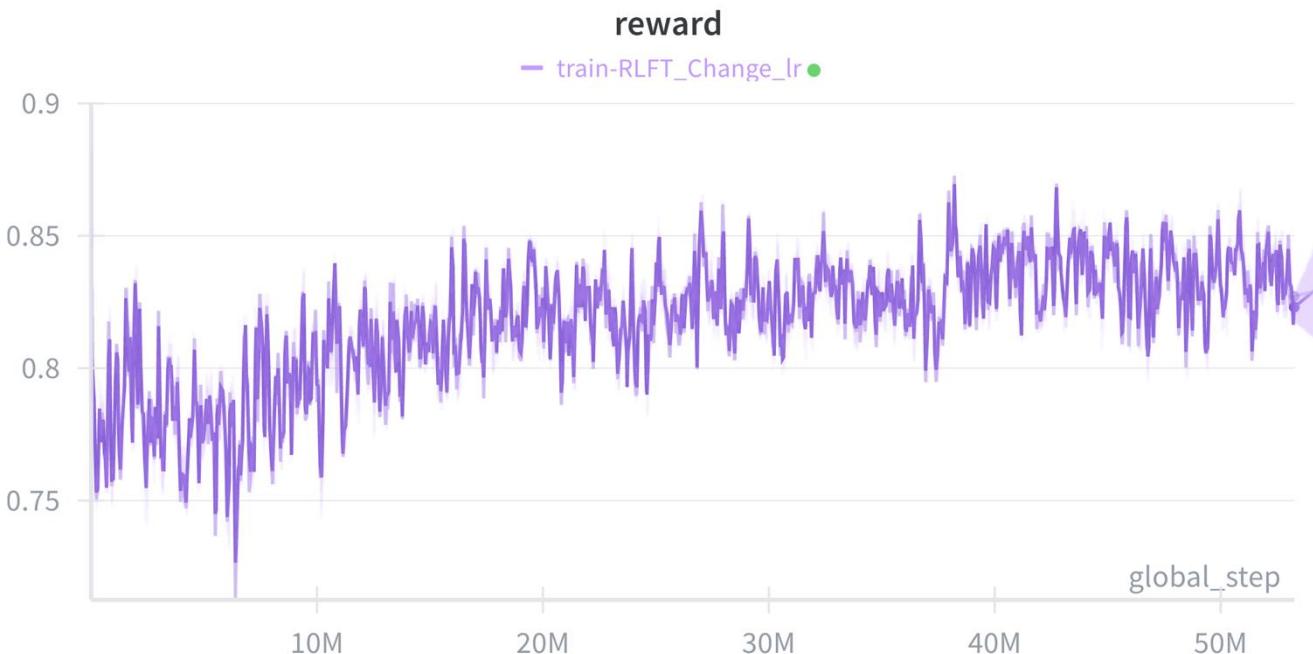
Why standard RL is not enough



Why standard RL is not enough



Why standard RL is not enough

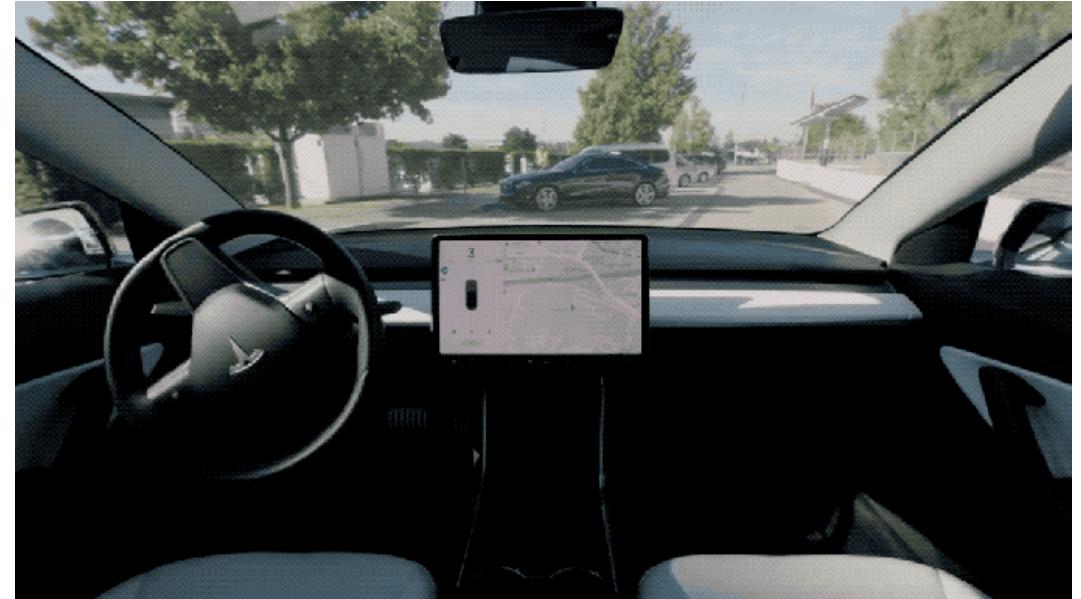


- 50M steps took 50h.
- Trained on a 4GPU compute node at 170fps.
- Suppose a real robot can perform 1 action per second:

50M interaction steps would take a whole year in the real world!

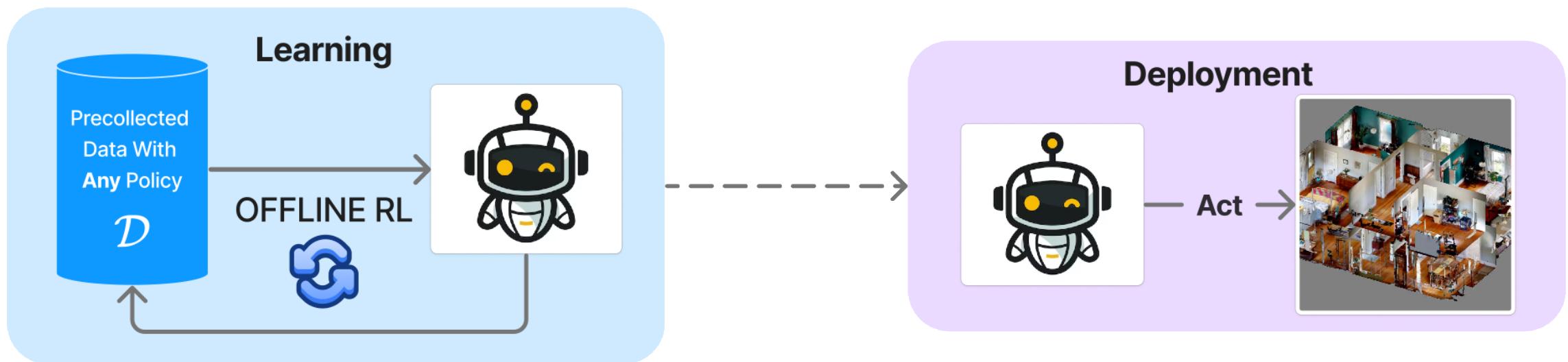
Why standard RL is not enough

What if we could use precollected datasets?



Offline Reinforcement Learning

Offline RL consists of learning from a fixed dataset of trajectories without ever querying the environment.



OffNav: offline RL without extrapolation

- OffNav is an offline RL framework for visual semantic navigation.
- It is based in Implicit Q-Learning algorithm [1] adapted to work with habitat simulator.

expectile regression

$$L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^\tau \left(Q_{\hat{\theta}}(s, a) - V_\psi(s) \right) \right]$$

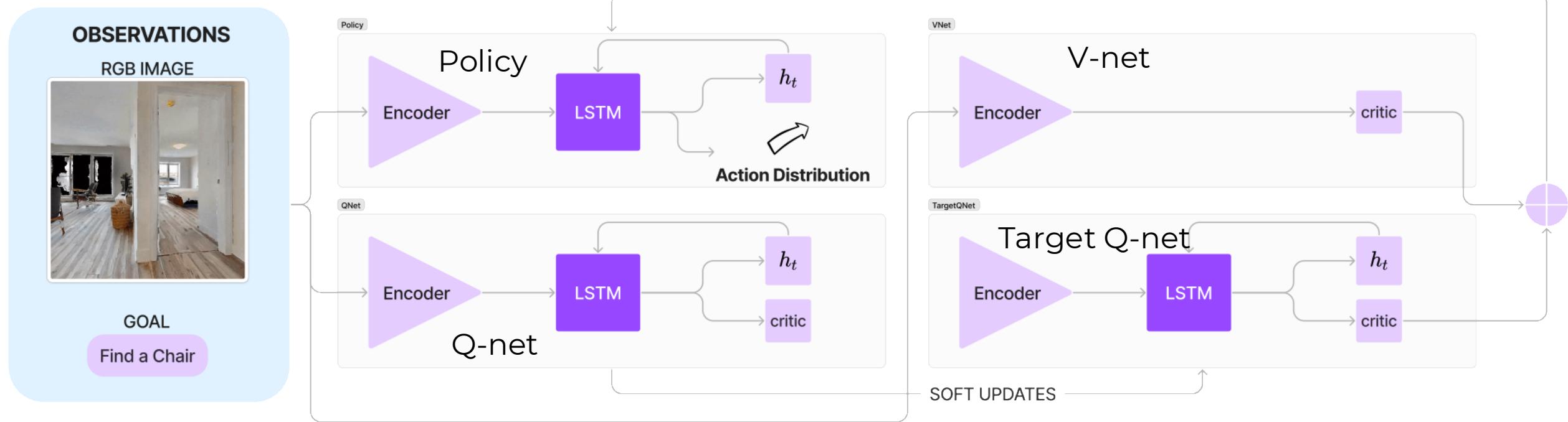
in-distribution

$$L_Q(\theta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[(r(s, a) + \gamma V_\psi(s') - Q_\theta(s, a))^2 \right]$$

$$L_\pi(\phi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp \left(\frac{\beta (Q_{\hat{\theta}}(s, a) - V_\psi(s))}{\max Q \text{ values}} \right) \log \pi_\phi(a \mid s) \right]$$

behavior cloning

OffNav: offline RL without extrapolation



Experimental setups

- The model implemented is very heavy, consuming up to 80GB of VRAM for 8 envs.
- That's why this work uses an incremental experimental setup.
- A normal habitat HM3D experimental setup consists of **80 training scenes** and **20 validation environments**.

► Setup 1

1 environment
80% training episodes
20% testing episodes

► Setup 2

2 environments
80% training episodes
20% testing episodes

► Setup 3

10 environments
80% training episodes
20% testing episodes

► Setup 4

10 training envs
1 testing env

► Setup 5

10 training envs
2 testing envs
(minival)

**Experimental setups
with incremental
difficulty**

Experimental results

Success rate against behavior cloning baseline (PirlNav)

<i>Experimental Setup</i>	<i>OffNav</i>	<i>PirlNav</i>
SETUP 1	100%	100%
SETUP 2	79.31%	72.50%
SETUP 3	75.78%	77.63%
SETUP 4	25.00%	27.27%
SETUP 5	34.78%	26.09%

How to bridge the gap

1. How to do RL with real world data

- Can we use offline RL to train policies that are able to navigate?

2. How to learn to navigate from a few examples

- Can we train meta-algorithms capable of navigate in new environments with few navigation trajectories?

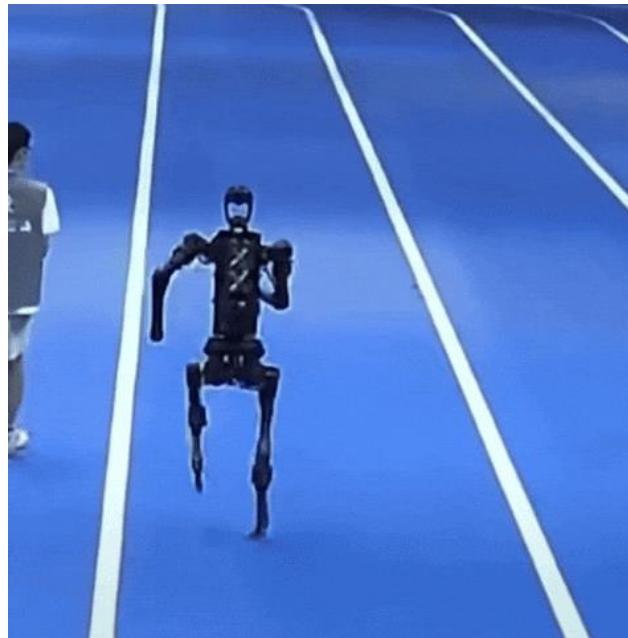
Real data collection problems

- OffNav algorithm was trained with 77k human recorded trajectories in habitat simulator.
- On chapter 4, the robots spent 38h operating to achieve a total of 150 trajectories.

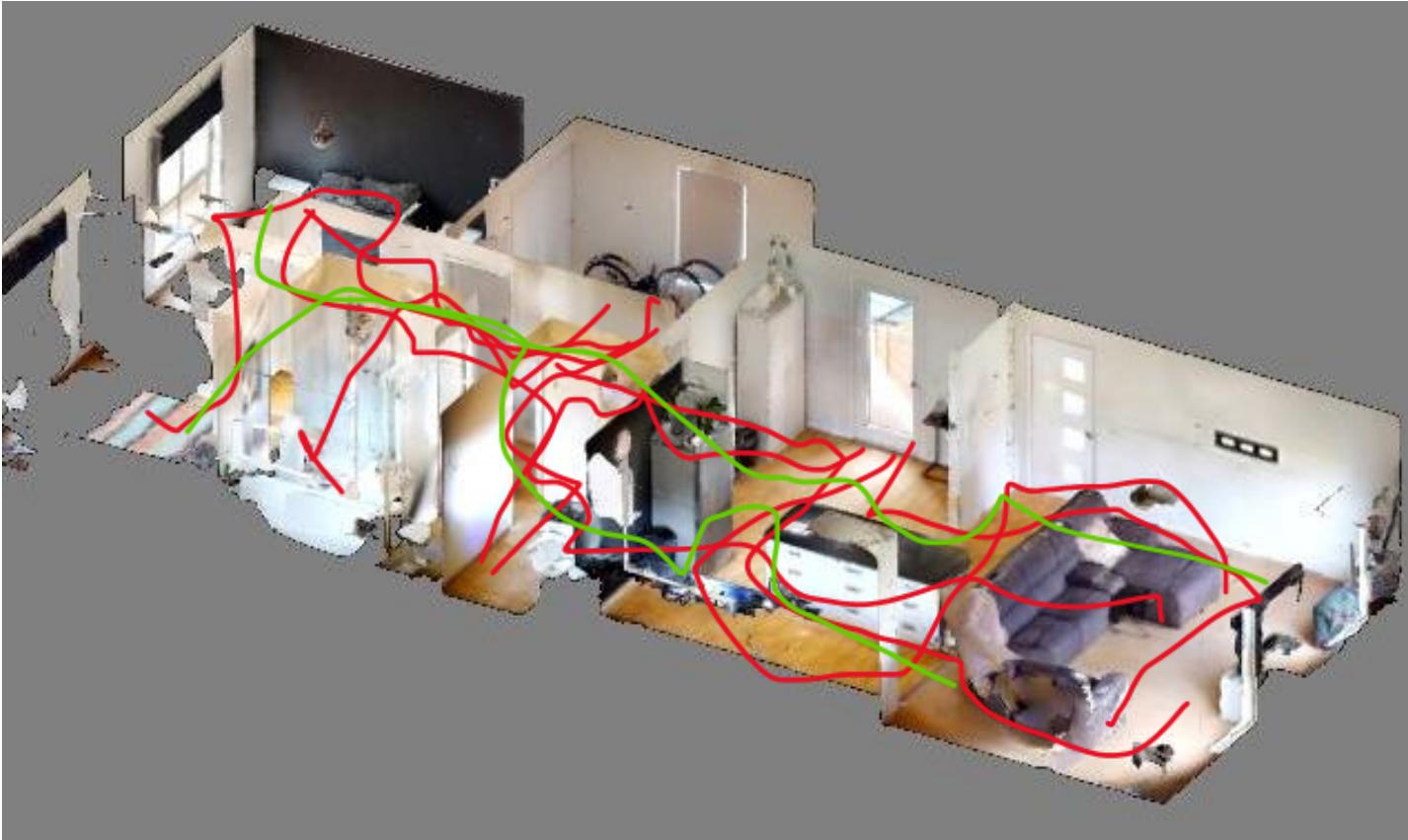
Collecting 77k trajectories would take more than two years in the real world!

Real data collection problems

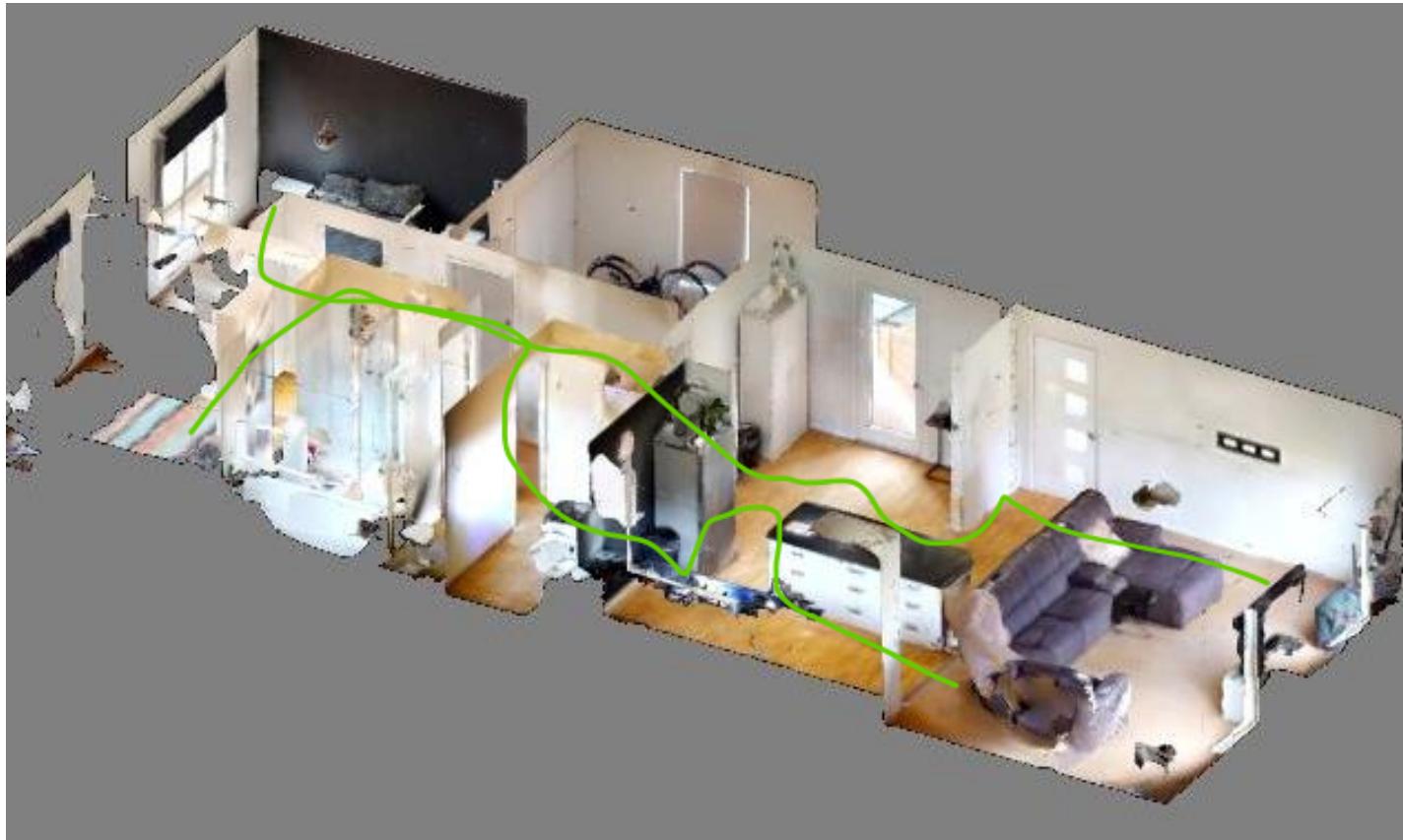
Data collection can be risky!



Why meta-imitation learning?



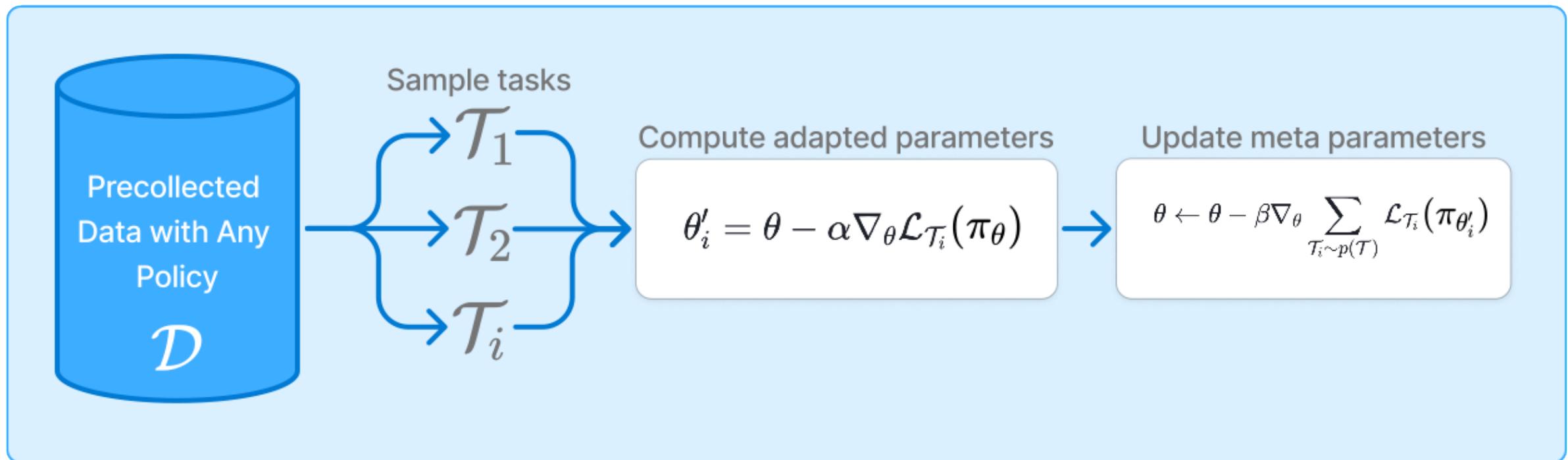
Why meta-imitation learning?



- Few demonstrations.
- Fast adaptation.
- Better generalization.

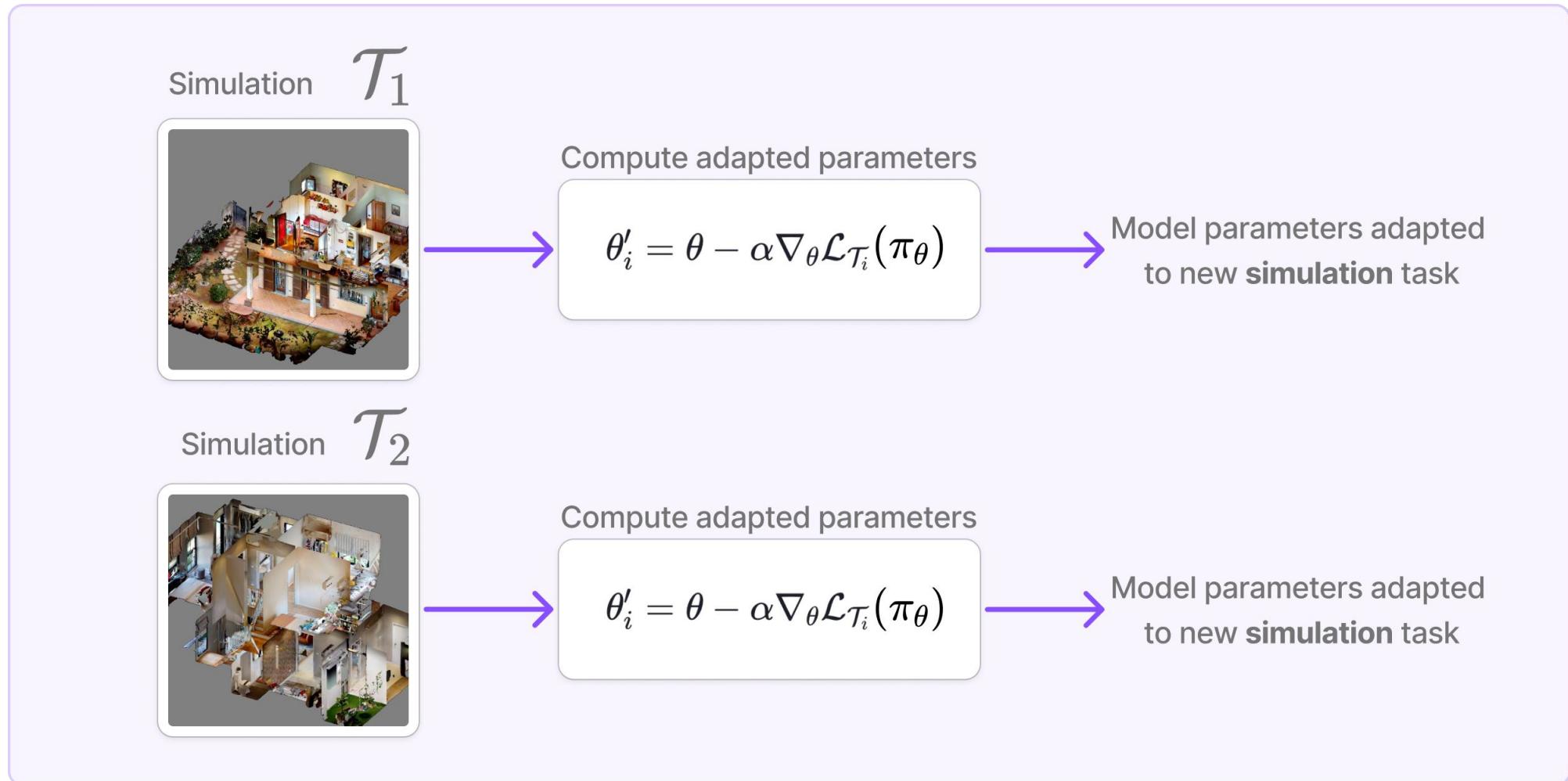
MetaNav: Learning to adapt

Learning



MetaNav: Learning to adapt

Deployment



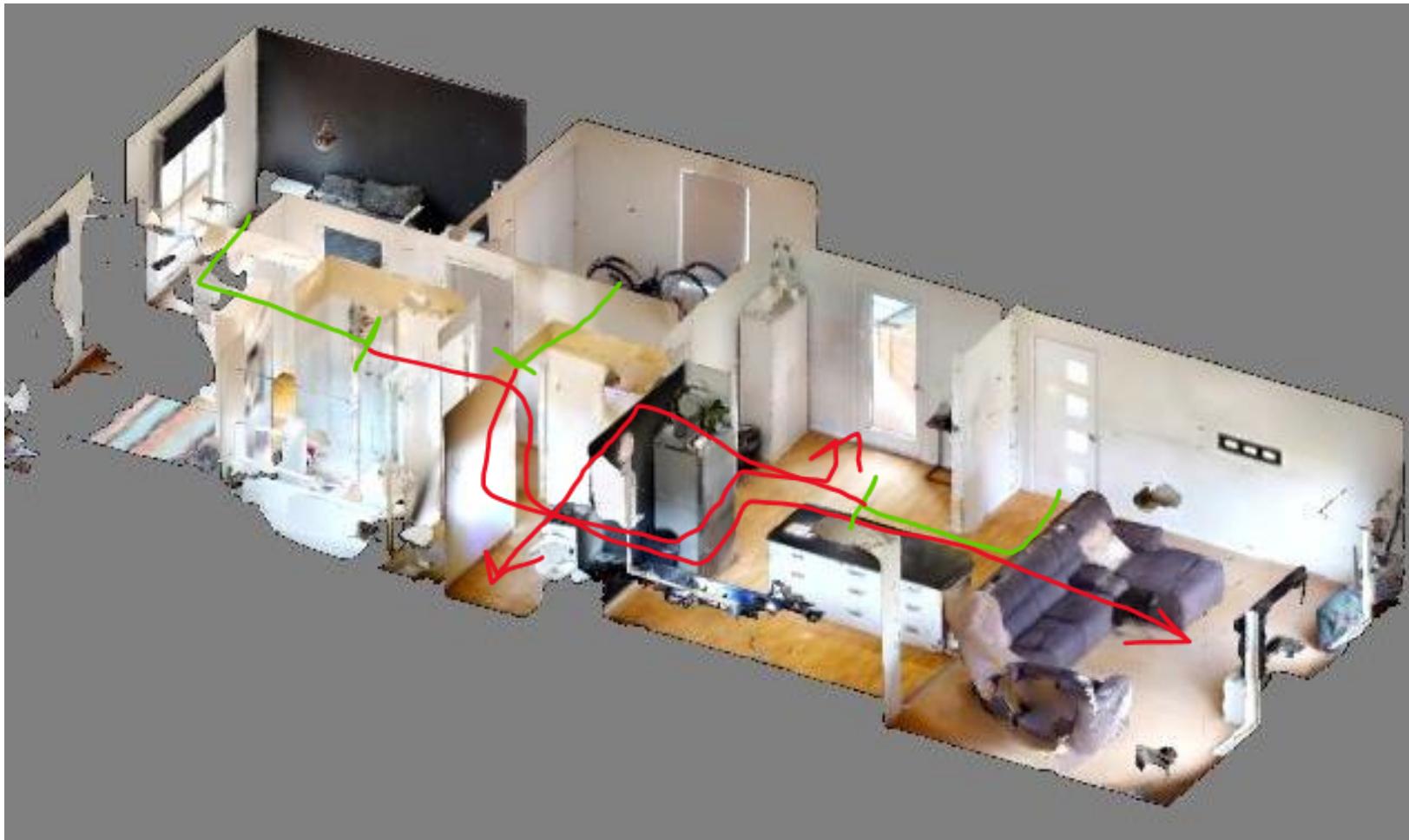
MetaNav: evaluation

Continuous evaluation

- Experience
- Evaluation

MetaNav: evaluation

Per-episode evaluation



- Experience
- Evaluation

MetaNav: experimental results

	Setup	SR (↑)	SPL (↑)	Distance to Goal (↓)
Continuous evaluation	1	89.18%	40.04%	0.29
	2	76.10%	33.92%	0.97
	3	64.19%	33.11%	1.99
	4	23.07%	11.87%	12.23
	5	21.74%	9.38%	7.99

	Setup	SR (↑)	SPL (↑)	Distance to Goal (↓)
Per-episode evaluation	1	83.33%	40.03%	0.29
	2	60.78%	26.58%	1.74
	3	55.19%	26.21%	2.54
	4	16.67%	4.84%	12.72
	5	25.00%	9.31%	8.19

Final results

<i>Experimental Setup</i>	<i>OffNav</i>	<i>PirlNav</i>	<i>MetaNav</i>
SETUP 1	100%	100%	89.18%
SETUP 2	79.31%	72.50%	76.10%
SETUP 3	75.78%	77.63%	64.19%
SETUP 4	25.00%	27.27%	23.07%
SETUP 5	34.78%	26.09%	25.00%

Meta-training +25M parameters

Meta-training task aware encoders

Conclusions

- Both OffNav and MetaNav are novel approaches to robot navigation that have demonstrated capable of navigating.
- OffNav is able to perform better than the behavior cloning baseline in some scenarios.
- While MetaNav is not able to perform better than the baseline or OffNav, it is able to navigate and the philosophy of navigating on novel environments with a few trajectories is promising.
- However, the results are not strong enough and suggest that further research has to be delivered to make this methods viable.

Associated publication:

HARL workshop
ICRA 2025

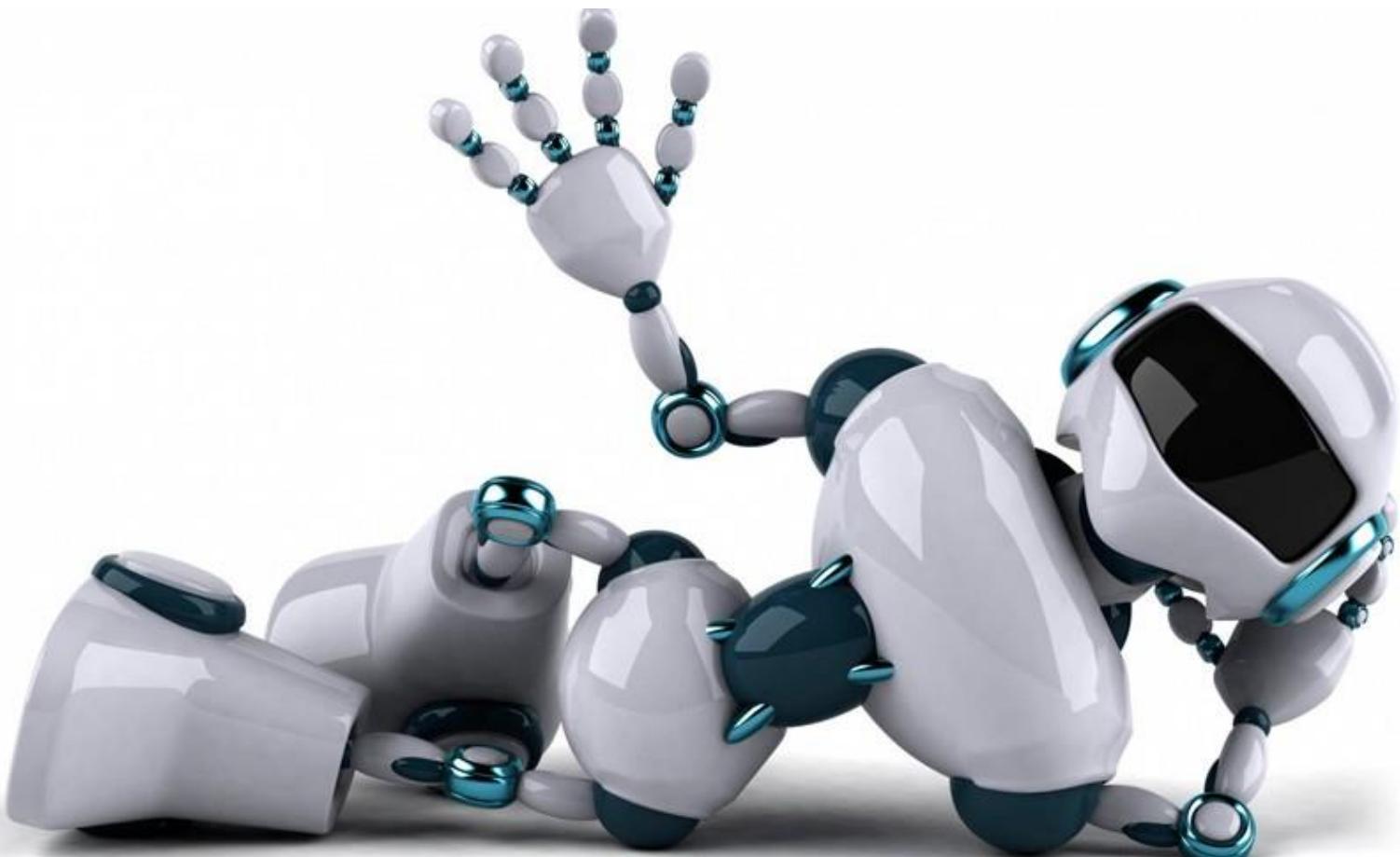
© IEEE
ICRA 2025
(Proposal)
Atlanta
U.S.A.

Offnav: Offline Reinforcement Learning
for Visual Semantic Navigation

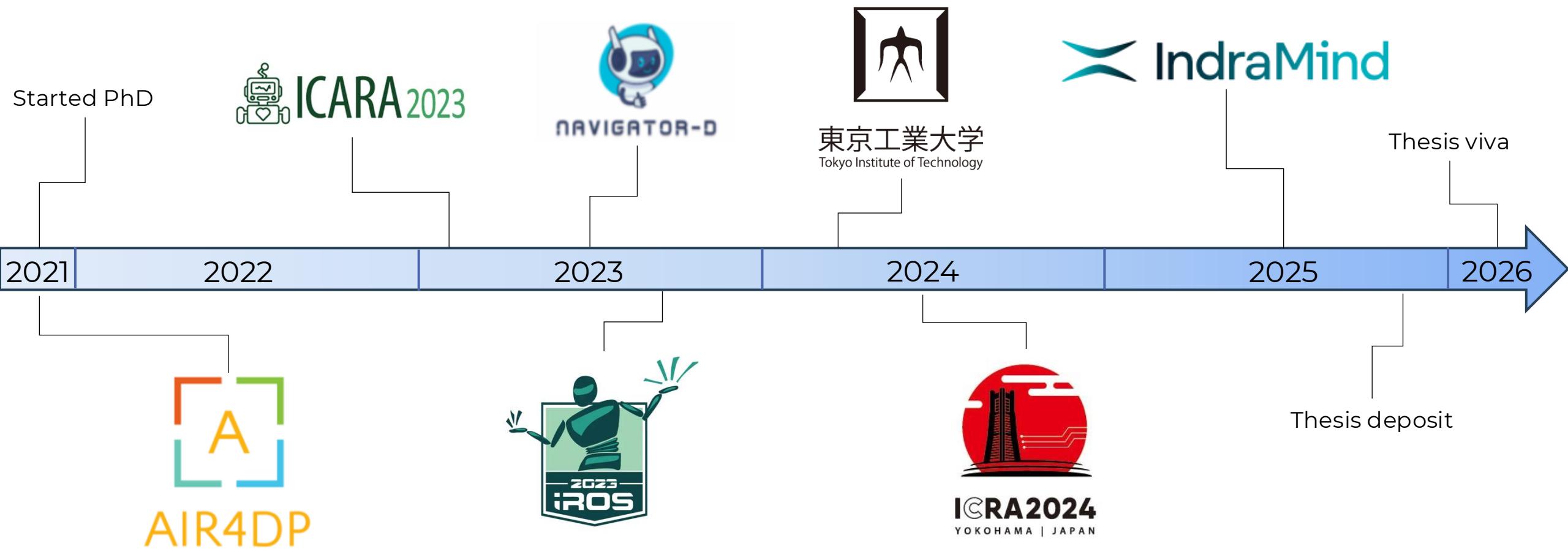
Gutiérrez-Alvarez C., Flor-Rodríguez-Rabadán R.,
Avecedo-Rodríguez FJ, López-Sastre RJ, Kanezaki A.

6. Final closure

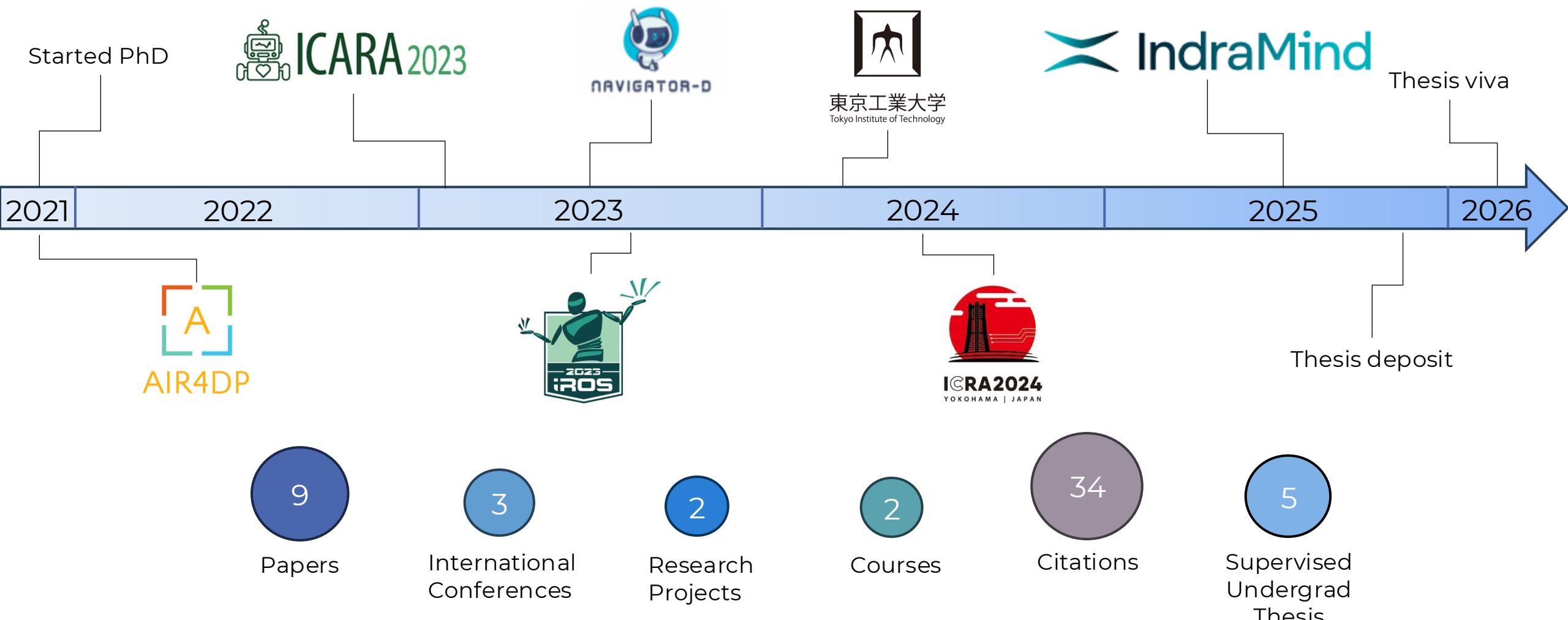
Scientific trajectory, impact and final conclusions



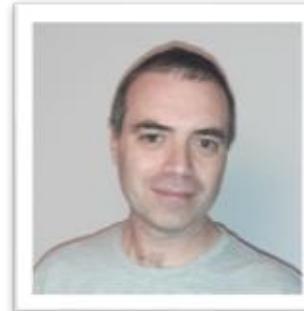
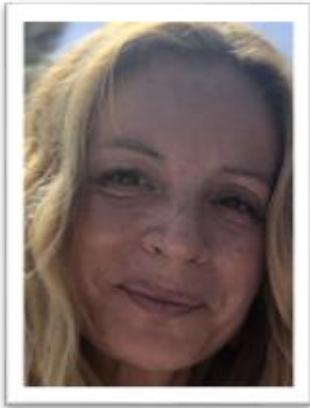
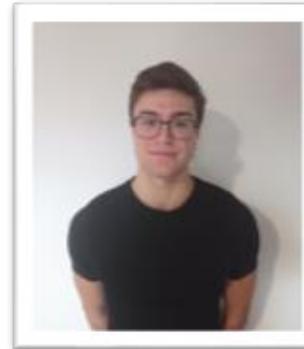
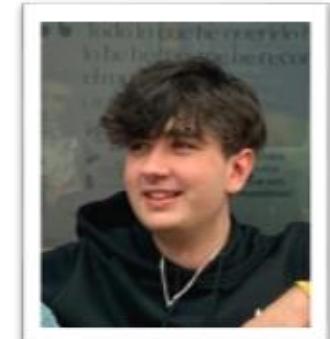
My Phd journey at a glance



My Phd journey at a glance



My lab



International research experience

March 2024 – Sep 2024

Asako Kanezaki
Associate Professor
Tokyo Institute of
Technology

東京科学大学 金崎研究室
Automation & Knowledge Laboratory

 東京工業大学
Tokyo Institute of Technology

Associated publication:

Offnav: Offline Reinforcement Learning
for Visual Semantic Navigation

Gutiérrez-Alvarez C., Flor-Rodríguez-Rabadán R.,
Avecedo-Rodríguez F.J., López-Sastre R.J., Kanezaki A.

Attended:

Scholarships:

- FPI scholarship from Spanish Ministry of Science: 5780€.
- Mobility scholarship from UAH: 3000€.

International research experience

Scientific publications

Publications directly related to the thesis

1. **Gutiérrez-Alvarez C.**, Ríos-Navarro P., Flor-Rodríguez-Rabadán R., Acevedo-Rodríguez F.J., López-Sastre R.J., *Visual Semantic Navigation with Real Robots*, in Applied Intelligence, 2025. [5 citations, JCR Q2](#)
2. **Gutiérrez-Alvarez C.**, Acevedo-Rodríguez F.J., López-Sastre R.J., Kanezaki A., OffNav: *Offline Reinforcement Learning for Visual Semantic Navigation*, in ICRA Human-aligned Reinforcement Learning for Autonomous Agents and Robots Workshop, 2024. [0 citations](#)
3. **Gutiérrez-Alvarez C.**, Ríos-Navarro P., Flor-Rodríguez-Rabadán R., Acevedo-Rodríguez F.J., López-Sastre R.J., *Evaluation of Visual Semantic Navigation Models in Real Robots*, in IROS Late Breaking Results, 2023. [0 citations](#)
4. **Gutiérrez-Alvarez C.**, Hernández-García S, Nasri N, Cuesta-Infante Alfredo, López-Sastre RJ, *Towards Clear Evaluation of Robotic Visual Semantic Navigation*, in ICARA, 2023. [0 citations](#)

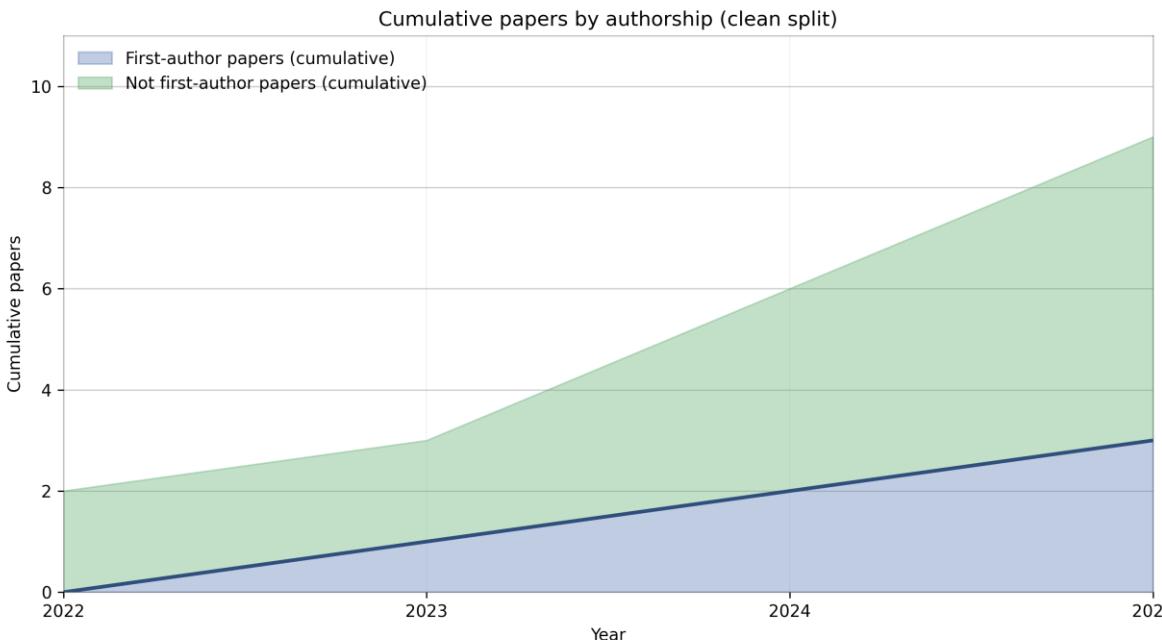
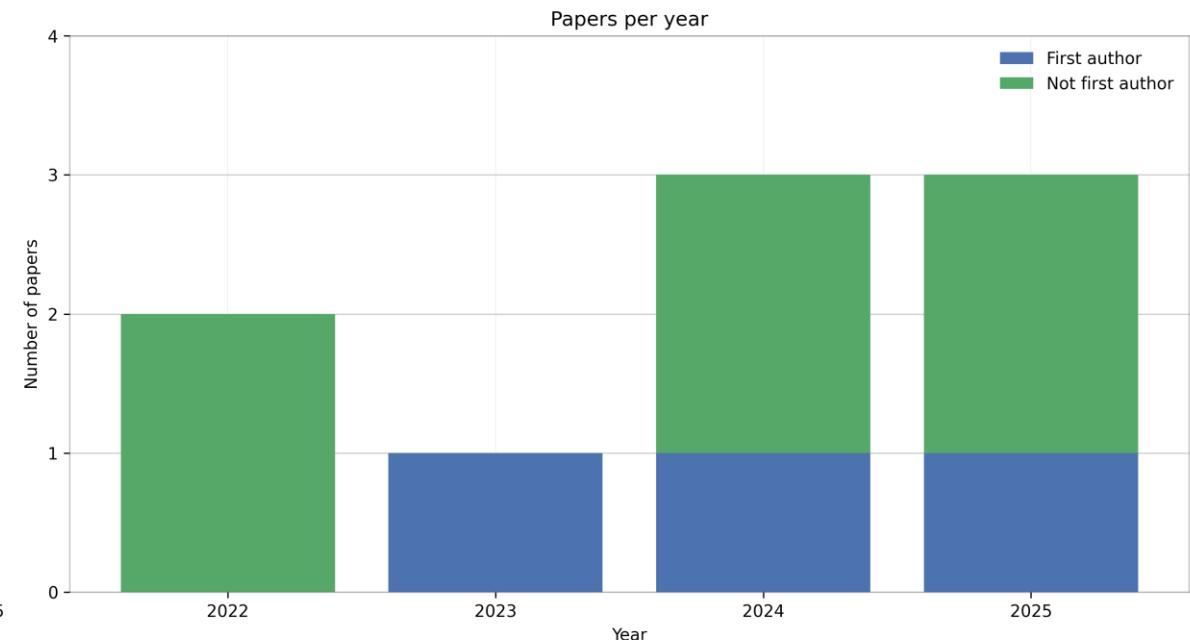
Scientific publications

Side publications

1. Flor-Rodríguez-Rabadán R., **Gutiérrez-Álvarez C.**, Acevedo-Rodríguez, F.J., Lafuente-Arroyo S., López-Sastre R.J., *SEMNAV: A Semantic Segmentation-Driven Approach to Visual Semantic Navigation*, in ArXiv, 2025. [0 citations](#)
2. Blanco-Fernández E., **Gutiérrez-Álvarez C.**, Nasri N., Maldonado-Bascón, S., López-Sastre R.J., *Live Video Captioning*, in *Multimedia Tools and Applications*, 2025. [4 citations](#), [JCR Q2](#)
3. Nasri N, **Gutiérrez-Álvarez C.**, López-Sastre RJ, Lafuente-Arroyo S., Maldonado-Bascón S. *Realistic Continual Learning Approach using Pretrained Models*, in ArXiv 2024. [0 citations](#)
4. Lafuente-Arroyo S., Maldonado-Bascón S., Delgado-Mena D., **Gutiérrez-Álvarez C.**, Acevedo-Rodríguez F.J., *Multisensory Integration for Topological Indoor Localization of Mobile Robots in Complex Symmetrical Environments*, in *Expert Systems with Applications*, 2023. [7 citations](#), [JCR Q1](#)
5. Nasri N, López-Sastre RJ, Pacheco-da-Costa S, Fernández-Munilla I, **Gutiérrez-Álvarez C.**, Pousada-García T, Acevedo-Rodríguez FJ, Maldonado-Bascón S. *Assistive Robot with an AI-Based Application for the Reinforcement of Activities of Daily Living: Technical Validation with Users Affected by Neurodevelopmental Disorders*, in *Applied Sciences*, 2022. [18 citations](#), [JCR Q2](#)

Bibliometric impact

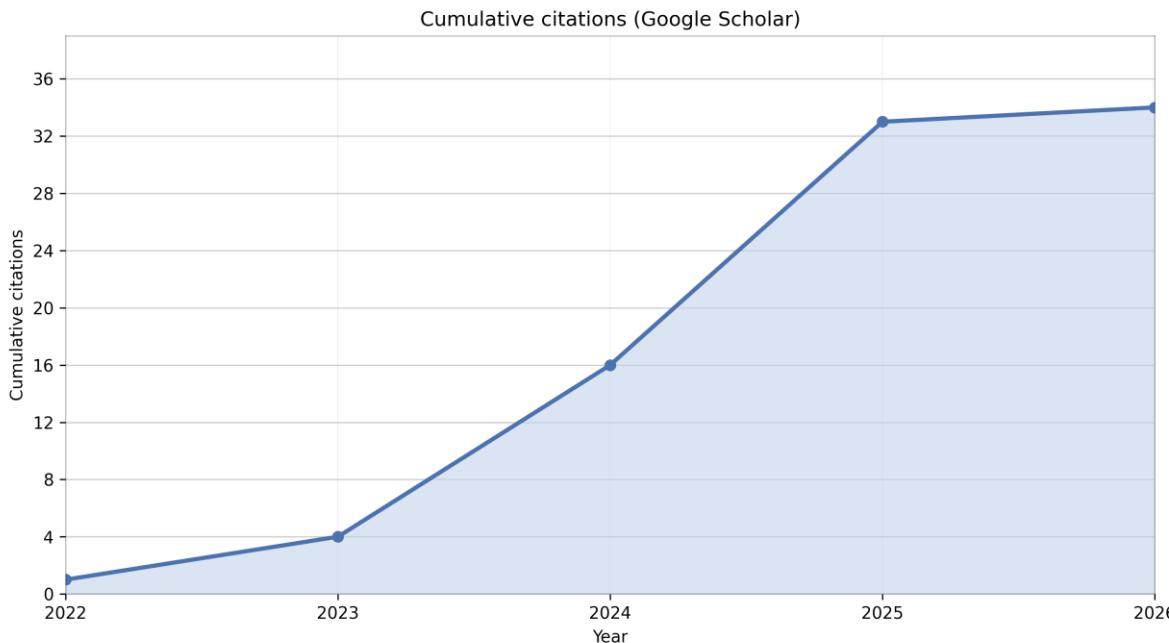
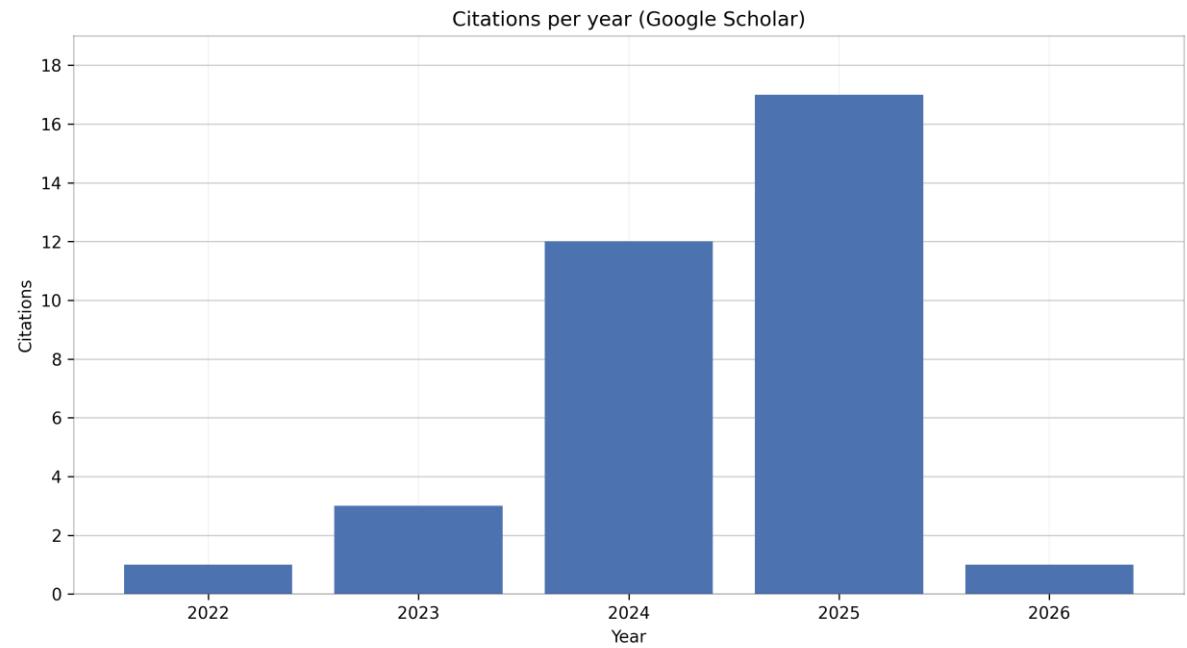
Papers



- Total papers: 9
- First author: 3
- Not first author: 6

Bibliometric impact

Citations



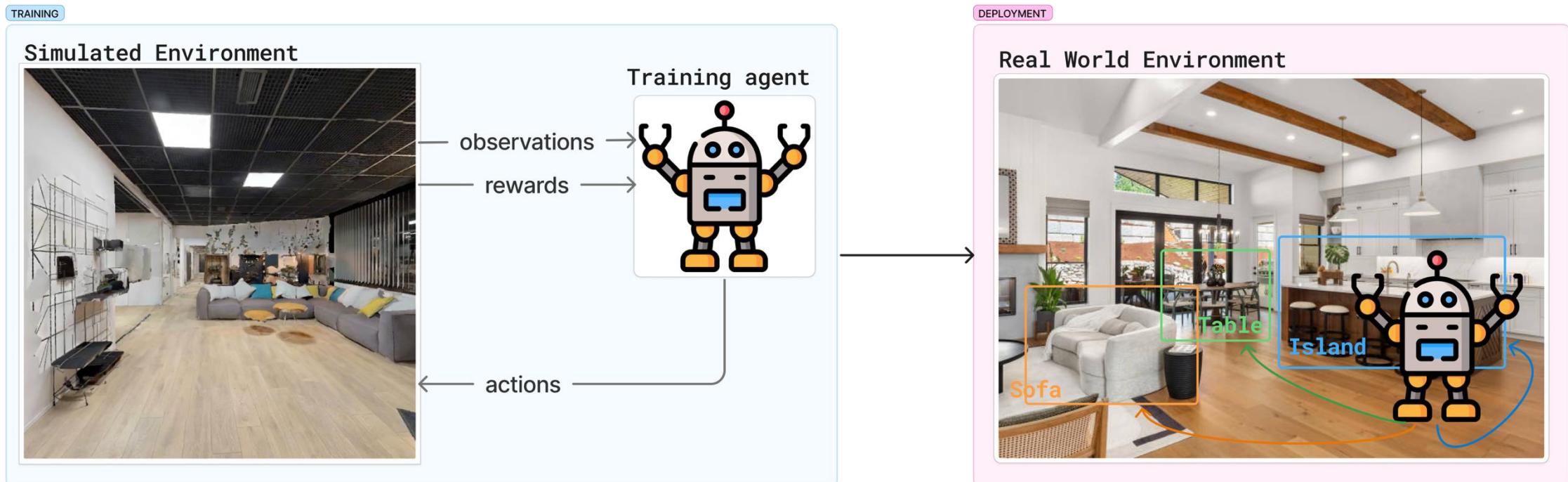
- Total citations: 34
- H-index: 3
- I10-index: 1

Limitations & future work

- Add more types of multimodal sensor to make the navigation closer to that of humans:
 - Audio sensors.
 - Tactile sensor.
- Explore more complex tasks: not only navigating to an object, but rearranging room objects or following complex instructions via text.
- Try new meta learning approaches that do not heavily modify the subjacent algorithm: the method used in chapter 5 meta adapts the whole parameters of the model, which can hurt performance. It could be more promising to use meta learning approaches that do not modify the parameters and could for example represent the task information into an encoder.

Global Scientific Conclusions

- High performance in simulation does **not** guarantee real-world robustness.
- Modular architectures remain **more reliable** for real robotic deployment.
- Data-efficient learning is **essential** for scalable embodied intelligence.



The end
Thank you!

Universidad
de Alcalá