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1. Motivation
Why do we study robotic navigation?
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Why Navigation Matters
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Embodied intelligent entities

⟹

Interaction with the real world

⟹

Interaction with the real world

Movement



Why Navigation Matters
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Embodied intelligent entities

⟹

Interaction with the real world

⟹

Interaction with the real world

Movement

Without navigation there is 
no embodied intelligence



Different types of robotic navigation

• Navigation based on the use of 
geometrical information to calculate 
most optimal routes.

• It needs a previously existing map of 
the environment or the creation of it 
on the fly.
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Classical Navigation

Visual Semantic Navigation
• Based on the use of egocentric 

images of the agent to decide 
where to navigate.

• This approach does not necessarily 
need any map of the environment, 
but some approaches create it on 
the fly.



Classical Navigation
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I want to go 
from X to Y

* video from nav2 documentation.

Diferenciar claramente entre classical y visual semantic y mencionar slam

SLAM – Simultaneous Localization and Mapping



Visual Semantic Navigation
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I want to go 
from X to Y

I want to go 
to the sofa

*Simulated environment



Visual Semantic Navigation
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I want to go 
to the sofa

Turn right



Visual Semantic Navigation
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Let’s go 
forward



Visual Semantic Navigation
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This is a Hot Research Topic
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This is a Hot Research Topic

14



The Scientific Challenges

15

1. Exploration vs exploitation

2. Generalization

3. Sim-to-real

How to decide when to stop exploring and exploiting the knowledge of the scene.

How to transfer the knowledge from one environment to another.

How to transfer the knowledge from simulated environments to real ones.



The Scientific Challenges
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1. Exploration vs exploitation
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1. Exploration vs exploitation



The Scientific Challenges
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1. Exploration vs exploitation

• Exploration trajectory.
• Not optimal but 

probably will get to the 
target.



The Scientific Challenges
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1. Exploration vs exploitation

• Exploitation trajectory.
• Close to optimal path 

length.
• However, needs 

previous knowledge of 
the environment.



The Scientific Challenges
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1. Exploration vs exploitation

• Exploitation trajectory.
• Close to optimal path 

length.
• However, it needs 

previous knowledge of 
the environment.



The Scientific Challenges
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2. Generalization



The Scientific Challenges
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2. Generalization



The Scientific Challenges
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3. Sim-to-real

*videos from isaac sim documentation.



Thesis Objective
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“Bridge simulation and real-world navigation via 
Reinforcement Learning (RL) algorithms”

RL Algorithm

Simulated 
environment Real world environment



2. Theoretical 
framework
How do we study robotic 
navigation?
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RL for Visual Semantic Navigation (VSN)
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𝑀𝐷𝑃 = {𝑠𝑡, 𝑎𝑡, 𝑃𝑎,𝑡, 𝑟𝑎,𝑡}



RL for Visual Semantic Navigation (VSN)
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RL for Visual Semantic Navigation (VSN)
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RL for Visual Semantic Navigation (VSN)
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RL for Visual Semantic Navigation (VSN)
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RL for Visual Semantic Navigation (VSN)
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RL for Visual Semantic Navigation (VSN)
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Three Families of VSN

36* Image grom Gervert et.al. 2023

1. Classical methods

2. Modular learning methods

3. End-to-end learning methods

No learning components.

Mix between learning and non learning components.

Only learning components.

Level of 
learning 
modules



Classical methods

37* Video grom Gervert et.al. 2023



Modular learning

38* Image grom Chaplot et.al. 2020



Modular learning

39* Image grom Chaplot et.al. 2020



End-to-end learning
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“Sofa”

Pose

RGB

Target

ResNet 50 Em
be

dd
in

g

LSTM

Actions

Hidden
State

Prev
actions



Offline RL

41* Images grom Levine et.al. 2020

Revisar bien lo que digo



Offline RL

42* Images grom Levine et.al. 2020



Meta Learning
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Meta Learning
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Meta Learning
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1. Meta training

Task 1

Task 2

Task n

2. Meta testing



Meta Learning
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1. Meta training

Task 1

Task 2

Task n

2. Meta testing

Adaptation



Meta Learning
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1. Meta training

Task 1

Task 2

Task n

2. Meta testing

Adaptation

House 1

House 2

House 3



3. Understanding 
Visual Semantic
Navigation
How do we train VSN agents using 
reinforcement learning
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Motivation

49

• Can we navigate?

• Dense rewards → gives more info to the 
agent but must be designed.



Motivation
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• Can an agent localize a target in an 
environment given just visual 
information?

• What are the main challenges a deep 
reinforcement learning agent has to 
overcome to successfully navigate to 
targets within a scene?

• First scientific problem of the thesis.



How to navigate
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Reinforcement Learning with PPO

“forward” “turn left” “turn right”

𝑟 = 0.1 𝑟 = 0.2 𝑟 = 0.9

𝜋𝜃
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝜃𝔼𝒯~𝜋𝜃 ෍

𝑡=0

H

𝑟𝑎𝑡𝛾
t−1



How to navigate
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𝜋𝜃
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝜃𝔼𝒯~𝜋𝜃 ෍

𝑡=0

H

𝑟𝑎𝑡𝛾
t−1

Reinforcement Learning with PPO

surrogate value loss entropy loss

Actor-critic:
Actor
Critic

𝜋𝜃
V𝜃(st)



How to navigate
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Problems of RL for navigation

• Sparse rewards → almost no info for the agent in the environment.

• Dense rewards → gives more info to the agent but must be 
designed.
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1. How to choose the correct reward function

2. Trade off between exploration and exploitation
• Exploration is inefficient for navigation, but it has to be done in 

order to learn the environment.

• Exploitation let the agent use its previous knowledge of the 
environment to get to the target as quick as possible.



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01

−0.01−0.01

−0.01 −0.01

−0.01 −0.01

−0.01 −0.01

−0.01

−0.01 −0.01

−0.01 −0.01

Contextualiza bien los problemas que vamos a resolver luego



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01−0.01

−0.01 −0.01

−0.01 −0.01

−0.01 −0.01

−0.01

−0.01 −0.01

−0.01 −0.01

𝑟1 = −0,01



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01−0.01

−0.01

−0.01 −0.01

−0.01 −0.01

−0.01

−0.01 −0.01

−0.01 −0.01

𝑟2 = −0,02



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01−0.01

−0.01

−0.01

−0.01 −0.01

−0.01

−0.01 −0.01

−0.01 −0.01

𝑟3 = −0,03



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01−0.01

−0.01

−0.01

−0.01

−0.01

−0.01 −0.01

−0.01 −0.01

𝑟4 = −0,04



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

1

Navigation Reward

−0.01−0.01

−0.01

−0.01

−0.01−0.01 −0.01

−0.01 −0.01

𝑟5 = −0,05



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = −𝑟𝑠 + 𝑟𝑇

Navigation Reward

−0.01−0.01

−0.01

−0.01

−0.01−0.01 −0.01

−0.01 −0.01

𝑟6 = 0,95

Distance Reward

Reward Shaping −0.01−0.01

−0.01 −0.01−0.01

−0.01−0.01

−0.01−0.01−0.01 −0.01

−0.01 −0.01 −0.01

𝑟𝑡 = ∆𝑑𝑠𝑡 + 𝑟𝑠 + 𝑟𝑇

1



How to choose the correct reward
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Sparse Reward

Rewards present in the environment are 
zero most of the time, except for when the 
agent reaches the target.

𝑟𝑡 = 𝑟𝑠 + 𝑟𝑇

Navigation Reward

−0.01−0.01

−0.01

−0.01

−0.01−0.01 −0.01

−0.01 −0.01

𝑟6 = 0,95

Distance Reward

Reward Shaping −0.01−0.01

−0.01 −0.01−0.01

−0.01−0.01

−0.01−0.01−0.01 −0.01

−0.01 −0.01 −0.01

𝑟𝑡 = ∆𝑑𝑠𝑡 + 𝑟𝑠 + 𝑟𝑇

1



Exploration vs Exploitation
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𝑎𝑡 = ቊ
𝑎𝑟𝑔𝑚𝑎𝑥 𝜋𝜗 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − ℰ

𝑟𝑎𝑛𝑑 𝑎 ∈ 𝒜 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ℰ



Experimental setup
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We use two Maze sizes:
• S3: 3X3 tiling.
• S5: 5x5 tiling.



Experimental setup
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Experimental setup

● Simulators: Miniworld-Maze and AI Habitat.
● Task: Find target in novel indoor environments.
● Dataset: HM3D for AI Habitat.
● Action space:

● Move forward, turn left and turn right for Miniworld-Maze.

● The previous ones plus look_up and look_down for AI Habitat.

● Metrics:
● Success Rate (SR)

● Steps Per Episode (SPE)

● Shortest Path Length (SPL)

● Distance To Goal (DTG)
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Hablar del 100 mazes ese



Miniworld Maze results
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Miniworld Maze results
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Ablation study
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Habitat HM3D results
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Habitat HM3D results
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Contar si hay una red un poco distinta pero en la red

Mirara a ver
Si tengo
Mas videos



Conclusions

● First paper on VSN and RL.

● Developed a state-of-the-art VSN 
that can navigate in different 
environments.

● Release of a collection of 100 mazes 
dataset.

● Code available in github.
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Towards Clear Evaluation of Robotic 
Visual Semantic Navigation, 2023
Gutiérrez-Alvarez C., Hernández-García S., Nasri N., 
Cuesta-Infante Alfredo., López-Sastre RJ.

Associated paper:



4. Real World VSN
How actual VSN algorithms behave in the real world

73



Motivation

74* Images from Ramrakhya et.al. 2023

Can a robotic agent navigate and 
interact in the real world as in 

simulation?



Motivation

75* Images from Ramrakhya et.al. 2023

Can a robotic agent navigate and interact 
in the real world as in simulation?

ROS4VSN
ROS library

Real World VSN

ANY 
VSN model



Real World VSN with ROS4VSN
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Novel ROS library to study how VSN algorithms behave in the 
real world



The core problem

77* Images from Ramrakhya et.al. 2023



The core problem

78* Images grom Ramrakhya et.al. 2023



Why simulation is not enough
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Real world Simulation

RGB Domain Gap

* Images from Gervert et.al 2023



Why simulation is not enough
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Depth Domain Gap

* Images from Gervert et.al 2023

RGB Depth Map RGB Depth Map

RGB Depth Map



Why simulation is not enough
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Actuators Domain Gap

* Images from Kadian et.al 2020



ROS4VSN: System architecture
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ROS4VSN: System architecture
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ROS4VSN: System architecture
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VSN Models Integrated
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VLV – Modular learning – Chang et.al 2020



VSN Models Integrated
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PIRLNAV – End-to-end learning – Ramrakhya et.al 2023

Poner imagen con diagrama que ambos se entrenan 
Con el mundo real



Real world experimental setup
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Real world experimental setup
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Real world experimental setup

89



VLV real world results
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VLV real world results
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PIRLNav real world results

92



PIRLNav real world results
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The big numbers

94

The success rate of end-to-end learning is greater in sim,
but it suffers a larger performance drop in the real world



The big numbers
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The success rate of end-to-end learning is greater in sim,
but it suffers a larger performance drop in the real world



Conclusions

• Developed a new ROS robotic 
framework for deploying VSN 
algorithms in the real world in any 
robot.

• The ROS4VSN library is very stable with 
more than 38h and 5km of operation.

• Modular learning wins end-to-end 
learning in real-world.

• There is still a lot of room for 
improvement on VSN algorithms to 
work in the real world.

• Code available in github.
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Visual Semantic Navigation with 
Real Robots, 2025
Gutiérrez-Alvarez C., Ríos-Navarro P., Flor-Rodríguez-
Rabadán R., Avecedo-Rodríguez FJ., López-Sastre RJ.

Associated publicaitons:

Applied Intelligence

Evaluation of Visual Semantic 
Navigation Models in Real Robots, 2023
Gutiérrez-Alvarez C., Ríos-Navarro P., Flor-Rodríguez-
Rabadán R., Avecedo-Rodríguez FJ., López-Sastre RJ.

IROS late 
braking results



5. Bridging the
Strategies to go easier from simulation

97

to the real world

gap



How to bridge the gap

• Can we use offline RL to train policies that are able to navigate?

98

1. How to do RL with real world data

2. How to learn to navigate from a few examples
• Can we train meta-algorithms capable of navigate in new 

environments with few navigation trajectories?



Why standard RL is not enough
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Simulation

Real World



Why standard RL is not enough
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Simulation

Real World



Why standard RL is not enough
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Simulation

Real World



Why standard RL is not enough
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Simulation

Real World

• 50M steps took 50h.

• Trained on a 4GPU compute 
node at 170fps.

• Suppose a real robot can 
perform 1 action per second:

50M interaction steps would 
take a whole year in the real 

world!



Why standard RL is not enough
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What if we could use precollected datasets?



Offline Reinforcement Learning

104

Offline RL consists of learning from a fixed dataset of trajectories without ever 
querying the environment.



OffNav: offline RL without extrapolation

105

• OffNav is an offline RL framework for visual semantic navigation.

• It is based in Implicit Q-Learning algorithm [1] adapted to work with habitat 
simulator.

[1] Kostrikov et.al 2021

in-distribution

expectile regression

maximum of Q values behavior cloning



106[1] Kostrikov et.al 2021

OffNav: offline RL without extrapolation

Policy

Q-net

V-net

Target Q-net



Experimental setups

107

• The model implemented is very 
heavy, consuming up to 80GB of 
VRAM for 8 envs.

• That’s why this work uses an 
incremental experimental setup.

• A normal habitat HM3D 
experimental setup consists of 
80 training scenes and 20 
validation environments.



Experimental results

108

Success rate agains behavior 
cloning baseline (PirlNav)



How to bridge the gap

• Can we use offline RL to train policies that are able to navigate?

109

1. How to do RL with real world data

2. How to learn to navigate from a few examples
• Can we train meta-algorithms capable of navigate in new 

environments with few navigation trajectories?



Real data collection problems
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• OffNav algorithm was trained 
with 77k human recorded 
trajectories in habitat 
simulator.

• On chapter 4, the robots 
spent 38h operating to 
achieve a total of 150 
trajectories.

* Images from Gervert et.al 2023

Collecting 77k trajectories 
would take more than two 

years in the real world!



Real data collection problems
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Data collection can be risky!



Why meta-imitation learning?
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Why meta-imitation learning?
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• Few demonstrations.

• Fast adaptation.

• Better generalization.



MetaNav: Learning to adapt
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MetaNav: Learning to adapt

115



MetaNav: evaluation
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Continuous evaluation

Experience

Evaluation



MetaNav: evaluation
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Per-episode evaluation

Experience

Evaluation



MetaNav: experimental results
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Continuous evaluation

Per-episode evaluation



Final results
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Meta-training +25M parameters Meta-training task aware encoders



Conclusions
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• Both OffNav and MetaNav are novel 
approaches to robot navigation that 
have demonstrated capable of 
navigating.

• OffNav is able to perform better that 
the behavior cloning baseline in some 
scenarios.

• While MetaNav is not able to perform 
better than the baseline or OffNav, it is 
able to navigate and the philosophy of 
navigating on novel environments 
with a few trajectories is promising.

• However, the results are not strong 
enough and suggest that further 
research has to be delivered to make 
this methods viable.

Offnav: Offline Reinforcement Learning 
for Visual Semantic Navigation
Gutiérrez-Alvarez C., Flor-Rodríguez-Rabadán R., 
Avecedo-Rodríguez FJ., López-Sastre RJ., Kanezaki A.

Associated publicaiton:

HARL workshop 
ICRA 2025



6. Final closure
Scientific trajectory, impact and final conclusions

121
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My lab
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International research experience
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Asako Kanezaki
Associate Professor
Tokyo Institute of 
Technology

Offnav: Offline Reinforcement Learning 
for Visual Semantic Navigation
Gutiérrez-Alvarez C., Flor-Rodríguez-Rabadán R., 
Avecedo-Rodríguez FJ., López-Sastre RJ., Kanezaki A.

Associated publicaiton:

HARL workshop 
ICRA 2025

Scholarships:
• FPI scholarship from Spanish 

Ministry of Science: 5780€.
• Mobility scholarship from UAH: 

3000€.

March 2024 – Sep 2024

Attended:



International research experience
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Limitations & future work

• Add more types of multimodal sensor to make the navigation closer to that of 
humans:
• Audio sensors.
• Tactile sensor.

• Explore more complex tasks: not only navigating to an object, but rearranging 
room objects or following complex instructions via text.

• Try new meta learning approaches that do not heavily modify the subjacent 
algorithm: the method used in chapter 5 meta adapts the whole parameters of 
the model, which can hurt performance. It could be more promising to use 
meta learning approaches that do not modify the parameters and could for 
example represent the task information into an encoder.
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Global Scientific Conclusions
• High performance in simulation does not guarantee real-world robustness.

• Modular architectures remain more reliable for real robotic deployment.

• Data-efficient learning is essential for scalable embodied intelligence.
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The end
Thank you!
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