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1. Motivation

Why do we study robotic nhavigation?
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Why Navigation Matters
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Why Navigation Matters
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Why Navigation Matters

Without navigation there Is
Nno embodied intelligence



Different types of robotic gation

Classical Navigation

* Navigation based on the use of
geometrical information to calculate

most optimal routes.

* |t needs a previously existing map of
the environment or the creation of it

on the fly.

Visual Semantic Navigation

* Based on the use of egocentric
images of the agent to decide
where to navigate.

* This approach does not necessarily
need any map of the environment,

but some approaches create it on
the fly.
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Classical Navigation

SLAM - Simultaneous Localization and Mapping
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Visual Semantic Navigation

| want to go
to the sofa

*Simulated environment




Visual Semantic Navigation
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Visual Semantic Navigation
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Visual Semantic Navigation
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This is a Hot Research Topic
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This is a Hot Research Topic
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The Scientific Challenges

1. Exploration vs exploitation
How to decide when to stop exploring and exploiting the knowledge of the scene.

2. Generalization
How to transfer the knowledge from one environment to another.

3. Sim-to-real

How to transfer the knowledge from simulated environments to real ones.

423 Universidad
#9i de Alcala

15



The Scientific Challenges

1. Exploration vs exploitation

£2% Universidad
de Alcala

N
A
o
SO

16



£2% Universidad
#@: de Alcala

I
2
&

The Scientific Challenges

1. Exploration vs exploitation
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The Scientific Challenges

1. Exploration vs exploitation

Exploration trajectory.
Not optimal but
probably will get to the
target.
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The Scientific Challenges
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The Scientific Challenges

1. Exploration vs exploitation

Exploitation trajectory.
Close to optimal path
length.

However, it needs
previous knowledge of
the environment.
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The Scientific Challenges

2. Generalization



The Scientific Challenges

2. Generalization




The Scientific Challenges

3. Sim-to-real

253 Universidad *videos from isaac sim documentation.



Thesis Objective

“Bridge simulation and real-world navigation via
Reinforcement Learning (RL) algorithms”

RL Algorithm

Simulated
environment Real world environment
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RL for Visual Semantic Navigation (VSN)
MDP = {s¢, ¢, Pyt Tat}

Agent

reward L @

action
A:

Environment
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RL for Visual Semantic Navigation (VSN)
MDP =({sy,|as, Pt 7o}

Agent
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RL for Visual Semantic Navigation (VSN)
MDP = {s; Pa,t: Tat}
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RL for Visual Semantic Navigation (VSN)
MDP = {sy,a¢,[Pat)Ta,}

Agent

reward

action
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RL for Visual Semantic Navigation (VSN)
MDP = {sy,a¢, Po Vo)

action
A:

Environment
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RL for Visual Semantic Navigation (VSN)
MDP = {s¢, ¢, Pyt Tat}
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RL for Visual Semantic Navigation (VSN)
MDP = {s¢, ¢, Pyt Tat}
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RL for Visual Semantic Navigation (VSN)
MDP = {s¢,a¢, Py, 7qty POMDP = {04, a4, Pat,7g ¢}

Agent

Environment
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RL for Visual Semantic Navigation (VSN)
MDP =at, Pot:tqty POMDP = {0, a¢, Py, 7ot}

Agent

Environment
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RL for Visual Semantic Navigation (VSN)
MDP =at, Pot:tqty POMDP = {0, a¢, Py, 7ot}
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Three Families of VSN

1. Classical methods
No learning components.

2. Modular learning methods Level of

Mix between learning and non learning components. learning
modules

3. End-to-end learning methods

Only learning components.

£4% Universidad * Image grom Gervert et.al. 2023 36
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Classical methods
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Modular learning

Sensor Pose
Reading (x,)

Semantic Mapping (fMap)

; , Long-term goal (g,) :
r—— 5 >/ Goal-Oriented >/ Deterministic
oo Semantic Policy (7;) Local Policy (7;)
Observation (s,) :
(RGBD) .
Semantic Map (m,) b 4

Object Goal
(G = “chair”)
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Modular learning

Sensor Pose
Reading (x,)

Semantic Mapping (fMap)

Goal-Oriented Deterministic

mo bsen;ﬁ; r_‘.(_sl)- {6’{#; Semantic Policy () Local Policy (7;)
—
Object Goal Acton ()
(G = “chair”) "
Observation (Goal: bed) Predicted Semantic Map Ground Truth
!
I
= i
_r .
L
Navigable Area 3: bed 7: oven B 11: clock
0: chair 4: toilet 1 8:sink B 12: vase
1: couch 5:tv B 9: refrigerator B 13: cup
2: potted plant 6: dining-table B 10: book W 14: bottle
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End-to-end learning

Actions

Pose

Hidden

I State I
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LSTM
RGB ResNet 50
Prev
actions
Target “Sofa”
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Revisar bien lo que digo

Offline RL

(a) online reinforcement learning (b) off-policy reinforcement learning
roliout data {08, 0,5, 7)) rollout data {18, By, 8, 1))
}
~ —1
I buffar
@) @ T
ﬂ-"l‘* +1 I { update
rolloutis) ) rollout(s) Mk+1
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Offline RL

(a) online reinforcement learning

X

roliout data (8, my, 5,
L& |
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(b) off-policy reinforcement learning
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(c) offline reinforcement leaming
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Meta Learning
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Meta Learning

1. Meta training
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Meta Learning

1. Meta training 2. Meta testing
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Meta Learning

1. Meta training 2. Meta testing
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3. Understanding
Visual Semantic
Navigation

How do we train VSN agents using
reinforcement learning
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Motivation
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Motivation

: « Can an agent localize a target in an
environment given just visual
information?

 What are the main challenges a deep
reinforcement learning agent has to
overcome to successfully navigate to
targets within a scene?

* First scientific problem of the thesis.

423 Universidad 50
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How to navigate

Reinforcement Learning with PPO

* —
Tg = argmaxy,Es o, Ta,Y

[ n”
turn left
“forward”

-
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How to navigate Py
Reinforcement Learning with PPO \ \\\\\ ‘

i S,
x t—1
Ty = argmaxy,Ey ., Ta,Y

LYHPHVESS(9) = B, [LELIP(9) — ¢ LY T (6) + coS[ma)(s¢)]

surrogate value loss entropy loss

LY (9) = K, [min('rt(ﬁ)fit, clip(r(6),1 — ¢, 1 + E)At)] re(9) = —molatlse)

o140t | St)
\ / Actor-critic:

t 2
LyF = (Va(s) = V;™*) Crtie Vy(so
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How to navigate
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Problems of RL for navigation

1. How to choose the correct reward function

« Sparse rewards » almost no info for the agent in the environment.

« Dense rewards -» gives more info to the agent but must be
designed.

2. Trade off between exploration and exploitation

« Exploration is inefficient for navigation, but it has to be done in
order to learn the environment.

« Exploitation let the agent use its previous knowledge of the
environment to get to the target as quick as possible.
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Contextualiza bien los problemas que vamos a resolver luego

How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

—0.01 i —0.01 —0.015 é

______________________________

-0.01 ;—0.01 —0.01 —0.01

1
_______ [r—— o ——— ==~

: :
' —0.01 '—0.01| —0.01
= | :
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How to choose the correct reward

Sparse Reward

—

Navigation Reward

Ty = —1, + 17

—0.01 i —0.01

_______________

Rewards present in the environment are
zero most of the time, except for when the
agent reaches the target.
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How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

—0.01 i —0.01 —0.015 é

______________________________

Goh, | —0.01
r, = —0,02
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How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

—0.01 i —0.01 —0.015 é

______________________________
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How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

—0.01 i —0.01 —0.015 é

______________________________
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How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

—0.01%-0.01 ] 1

______________________________

423 Universidad
#@4 de Alcala

60



How to choose the correct reward

Rewards present in the environment are

_’ zero most of the time, except for when the
Sparse Reward agent reaches the target.

Navigation Reward

Ty = —1, + 17

: :
—0.01 ' —0.01 i
| D@

______________________________
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How to choose the correct reward

Rewards present in the environment are
_> zero most of the time, except for when the

Sparse Reward agent reaches the target.

Navigation Reward Distance Reward
. =1,+171 1 =Ads, + 15+ 17
| i : |
=001} -001 P ~0.01: —0.01 [ —0.01: ¥
—0.01' —0.01 —0.01 »
—0.01 | —0.01 —0.01 Reward Shaping
: : -0.01
1, = 0,95
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Exploration vs Exploitation

Epsilon greedy method

Exploitation area

_ |argmax my with probability 1 — £
U = Vrand(a) € A with probability €

Exploration area

0 200 400 600 800 1000
Step
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Experimental setup

L] L
&> Miniwor
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angle: 40 . et angle: 168
steps: 41 e o steps: 4
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We use two Maze sizes:
* S3:3X3tiling.
* S5:5x5tiling.
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Experimental setup

2 4
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Hablar del 100 mazes ese

Experimental setup

Simulators: Miniworld-Maze and Al Habitat.
Task: Find target in novel indoor environments.
Dataset. HM3D for Al Habitat.

Action space:
e Move forward, turn left and turn right for Miniworld-Maze.

e The previous ones plus look_up and look_down for Al Habitat.
e Metrics:

e Success Rate (SR)

e Steps Per Episode (SPE)

e Shortest Path Length (SPL)

e Distance To Goal (DTQ)

423 Universidad
de Alcala

s
S

66



Miniworld Maze results

Output type Maze SR SPE Reward

Ours + e-greedy S3 0.75 + 0.44 120.59 +111.85 6.80 + 2.29
SH 0.18 - 0.38 534.40 £130.20 5.24 1 5.73
Ours + stochastic S3 063+ 049 12742413298 659 + 2.4]
SH 0.17 £ 038 521.39 +182.66 514 +5.70
random S3 0.18 + 0.39 278.04 + 51.55 0.37 + 3.66
SH 0.02+0.14 59607 £ 32.83 -2.09 £ 4.06

423 Universidad
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Miniworld Maze results

Output type Maze SR SPE Reward

53 0.75+044 12059 +11.85 6.80+2.29
S5 0.18 £+ 0.38 534.40 413020 5.24+5.73
Ours + stochastic 53 063+049 12742413298 659+ 241
S5 017 +£038 521.39 +182.66 514 =+570
53 018+ 039 27804 +5155 037+ 366
S5 002+£014 59607 +3283 -2.09%4.06

Ours + e-greedy

random

423 Universidad 68
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Ablation study

Reward function  Exploration strategy SR SPE Reward
distance reward e-greedy 0.18 + 0.38 534.40 +130.20 5.24 +5.73
navigation reward e-greedy 0.09 £ 0.29 575.86 + 9194  0.08 +£ 0.26
distance reward No 002+014 58866 +79.78 -1.24+ 418
navigation reward No 0.00+ 000 600.00+£0.00 0.00+0.00
0.204

= 55 wy/ sparse rew and no exploration
55 w/ sparse rew and exploration

—— 55w/ rew shaping and no exploration

— 55 w/ rew shaping and exploration

0.15 1

Success
[
—
[
|

=

o

Ln
I

0.00

0.0 0.2 0.4 0.6 0.8 1.0
Steps le7
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Habitat HM3D results

Output type SR SPL DTG SPE Reward

Best agent + e-greedy 0.96 + 0.19 0.66+0.25 0.25+0.85 189.99 +116.97 4.96 + 1.99
Best agent + stochastic  0.73+0.45 0.58+0.36 0.63+1.17 231.23+188.13  3.52 %+ 3.90
random 0.05+0.22 0.0240.10 4494172 49550 + 26.96 —4.68 & 2.16

423 Universidad 70
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Contar si hay una red un poco distinta pero en la red

Habitat HM3D results

Output type SR SPL DTG SPE Reward
Best agent + e-greedy 096 +=0.19 0.66+0.25 0.254+0.85 189.99 + 116.97 4.96 + 1.99
Best agent + stochastic 0.73+045 0.584+0.36 0.63+1.17 231.23 +188.13 3.52 4+ 3.90
random 0.05+0.22 0.02+£0.10 4.49+1.72 495.50 + 26.96 —4.68 £ 2.16
Mirara a ve
Sitengo
Mas video:

£2% Universidad
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Conclusions

o First paper on VSN and RL.

o Developed a state-of-the-art VSN
that can navigate in different
environments.

e Release of a collection of 100 mazes
dataset.

e

S

o Code available in github.

423 Universidad
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Associated paper:

2 [CARA 2023

Towards Clear Evaluation of Robotic

Visual Semantic Navigation, 2023

Gutiérrez-Alvarez C., Hernandez-Garcia S., Nasri N,
Cuesta-Infante Alfredo., Lopez-Sastre RJ.
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How actual VSN algorithms behaveiin
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Motivation

Can a robotic agent navigate and
iNnteract in the real world as In
simulation?
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Motivation

Can a robotic agent navigate and interact
INn the real world asin simulation?

= |
[ X

ROS4VSN ANY R 1 '
ROS library VSN model - R e

N '‘m B
. lt

Real World VSN

223 Universidad * Images from Ramrakhya et.al. 2023 75
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Real World VSN with ROS4VSN

Novel ROS library to study how VSN algorithms behave in the

real world

e

/" REALWORLD ™,
MEASUREMENTS

ODOMETRY

COMPASS

VSN

-‘}

OBJECT DETECTOR

m—

PATH PLANNER

l

_,.«} MNAVIGATION

M Universidad
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The core problem

Object Goal: Plant

Object Goal: Sofa

Object Goal: Chair

223 Universidad * Images from Ramrakhya et.al. 2023 77
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The core problem

Object Goal: Plant Object Goal: Sofa

Object Goal: Chair Object Goal: Toilet
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Why simulation is not enough
RGB Domain Gap

Real world Simulation

Universidad * Images from Gervert et.al 2023 79
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Why simulation is not enough
Depth Domain Gap

RGB Depth Map RGB Depth Map
.

T
&4| Collisions
in mirror

Mirror reflection

Door approach at an angle

Closed door

| T
p 2

RGB

TV reflection

(TV not mapped)
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#@% de Alcala




Why simulation is not enough

Actuators Domain Gap

L\
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ROS4VSN: System architecture

"H'IEI.IAL SEMANTIC HA\HEATIDH
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ROS4VSN: System architecture

VISUAL SEMANTIC NAVIGATION P a
Subscrive < jeameralcolor Publish
 al LR N

—
S

Subscrive o Pultlish n
o
{
) § =D T

DISCRETE MOVE

- femd_vel
:

-
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ROS4VSN: System architecture

%
Subscrive  fcameralcolor Publis E o
fcameraldepth g L

T

VISUAL SEMANTIC NAVIGATION

Al Model

Image Preprocessing

ol

£23 Universidad o
@4 de Alcala



VSN Models Integrated

VLV - Modular learning — Chang et.al 2020

&
|
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VSN Models Integrated

PIRLNAYV - End-to-end learning - Ramrakhya et.al 2023

; O apca | -E - En: -

. : Output
: : L 8 BC = | g i
E E . | R = [Action]
I I : J.I
e Maahie -

" o

224 Universidad
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Real world experimental setup

Object Goal

Chair
Sofa
Table
Bed
Toilet

224 Universidad 87
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Real world experimental setup

Object Goal

Chair
Sofa
Table
Bed
Toilet

224 Universidad
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Real world experimental setup

4 | WORKSATION @\‘

VISUAL SEMANTIC NAVIGATION

ON BOARD

7 N\
SETUP |

VISUAL SEMANTIC NAVIGATION

et |

89




VLV real world results

Experiments with VSN
Model VLV




VLV real world results

Object Goal | Successful episodes Avg. number of actions
Chair 6/15 40% 30
Sofa 6/15 40% 65
Table 6/15 40% 42
Bed 3/15 20% 39
Toilet 115 6,67% 42

Experiments with VSN
Model VLV

£53 Universidad
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PIRLNav real world results

Experiment Success
with Model PIRLNav

Target: Sofa




PIRLNav real world results

Object Goal | Successful episodes Avg. number of actions
Chair 5/15 33,33% 49
Monitor 5/15 33,33% 91
Sofa 515 33,33% 70
Bed 3/15 20,00% 97
Toilet 1/15 6,67% 61
Plant 0/15 0,00% 82

£53 Universidad
#9: de Alcala

Experiment Success
with Model PIRLNav

Target: Sofa
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The big numbers

The success rate of end-to-end learning is greater in sim,
but it suffers a larger performance drop in the real world

Models SR (Real World) SR (Virtual Environment)
VLV [31] 29.33% 39%
PIRLNAV [45] 21.11% 65%

224 Universidad

i

@ de Alcala
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The big numbers

The success rate of end-to-end learning is greater in sim,

Models | (Real World) (Virtual Environment)
VLV [31] 29.33% 39%
PIRLNAV [45] 21.11% 65%

How the Robot
Navigates from Outside

with Model VLV

Target: Sofa
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Conclusions

Associated publicaitons:

@ Springer

* Developed a new ROS robotic

framework for deploying VSN Applied Intelligence
algorithms in the real world in any . | .
robot. Visual Semantic Navigation with

Real Robots, 2025

* The ROS4VSN library is very stable with Gutiérrez-Alvarez C, Rios-Navarro P, Flor-Rodriguez-
more tha N 38h 3 ﬂd 5km Of O pe ration. Rabadan R, Avecedo-Rodriguez FJ., Lopez-Sastre RJ.
 Modular learning wins end-to-end \[/

learning in real-world.

IROS late
braking results

e There is still a lot of room for
Improvement on VSN algorithms to
work in the real world.

« Code available in github. Evaluation of Visual Semantic
Navigation Models in Real Robots, 2023

Gutiérrez-Alvarez C., Rios-Navarro P., Flor-Rodriguez-
Rabadan R, Avecedo-Rodriguez FJ., Lopez-Sastre RJ.

423 Universidad 96
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How to bridge the gap

1. How to do RL with real world data
« Can we use offline RL to train policies that are able to navigate?

2. How to learn to navigate from a few examples

« Can we train meta-algorithms capable of navigate in new
environments with few navigation trajectories?

£2% Universidad
#©: de Alcala
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Why standard RL is not enough

Agent
reward
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( . \ action
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Why standard RL is not enough
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Why standard RL is not enough
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Why standard RL is not enough

—  50M steps took 50h.

0.9 « Trained on a 4CGPU compute
node at 170fps.

* Suppose a real robot can
perform 1 action per second:

0.85

0.8

50M interaction steps would
0.75 .
’ take a whole year in the real
global_step world!
10M 20M 30M 40M 50M
£4% Universidad
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Why standard RL is not enough

What if we could use precollected datasets?

£53 Universidad 103
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Offline Reinforcement Learning

Offline RL consists of learning from a fixed dataset of trajectories without ever
querying the environment.

Learnin
< 9 Deployment

Precollected
Data With
Any Policy )

OFFLINE RL
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OffNav: offline RL without extrapolation

« OffNav is an offline RL framework for visual semantic navigation.
* |t is based in Implicit Q-Learning algorithm [1] adapted to work with habitat

simulator.
Ly (v) = (s,a)~D [L; (Qé(sa a) — V¢(3))]
iNn-distribution

Lo(0) = Eaa0)n| (r(s,0) + 1V (s') = Qu(s, )
Lﬂ'(¢) — <l:(s,(L)ND [exp Qé(sa a) _ VID(S))) log 7T¢(CL ‘ 8)]

Mmaximum of Q values

L2
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OffNav: offline RL without extrapolation

OBSERVATIONS
RGB IMAGE

GOAL
Find a Chair
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Policy

Encoder

Encoder

Q-net

LSTM

LSTM

by

&

Action Distribution

by

critic

ADVANTAGES

V-net

Encoder critic

Target Q-net

Encoder LSTM
critic

SOFT UPDATES

[1] Kostrikov et.al 2021
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Experimental setups

» Setup 1
* The model implemented is very y 1L;I£1F\?ironment | Experimental setups
heavy, consuming up to 80GB of Q 70% teating epsodes. with incremental
VRAM for 8 envs. > Setup 2 difficulty
« That's why this work uses an 2 environments
incremental experimental setup. Q Q S e
« A normal habitat HM3D » Setup 3
experimental setup consists of 10 environments
80 training scenes and 20 AR O M M J 20% touting episodes.
validation environments. » Setup 4
(0 O O O -
» Setup 5
10 training envs
(0 00 [ O = e
223 Universidad 107
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Experimental results

Success rate agains behavior
cloning baseline (PirINav)

M Universidad
£@: de Alcala

Experimental Setup | OffNav  PirINav
SETUP 1 100% 100%
SETUP 2 79.31% 72.50%
SETUP 3 75.78%  77.63%
SETUP 4 25.00% 27.27%
SETUP 5 34.78% 26.09%
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How to bridge the gap

1. How to do RL with real world data
« Can we use offline RL to train policies that are able to navigate?

4 ] )
2. How to learn to navigate from a few examples
« Can we train meta-algorithms capable of navigate in new
L environments with few navigation trajectories? )
£2% Universidad 109
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Real data collection problems

« OffNav algorithm was trained
with 77k human recorded
trajectories in habitat
simulator.

« On chapter 4, the robots
spent 38h operating to
achieve a total of 150
trajectories.

Collecting 77k trajectories
would take more than two
years in the real world!

£2% Universidad * Images from Gervert et.al 2023 110
#@% de Alcala g .



Real data collection problems

Data collection can be risky!
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Why meta-imitation learning?

£53 Universidad
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Why meta-imitation learning?

« Few demonstrations.
» Fast adaptation.
» Better generalization.

2 4
N i

£22 Universidad
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MetaNav: Learning to adapt

Sample tasks
Hﬂ Compute adapted parameters Update meta parameters
Precollected | . £ () "
. /f — 7 — -\ Ty
Data with Any < )75 6, =0 — anﬁfg(’ﬂ‘g) — H7;§T; TN,
Policy __ __ __

D —7T;

2 4
N i
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A

MetaNav: Learning to adapt

Deployment

Simulation 7’1

Compute adapted parameters

Model parameters adapted
0, =0 —aVelr(mg) —>
& 4 7;( 0) to new simulation task

Compute adapted parameters

Model parameters adapted
0. =0 —aVyelr(m —
¢ o 7:( 0) to new simulation task

£2% Universidad
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MetaNav: evaluation

Continuous evaluation

[] Experience
B Evaluation
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MetaNav: evaluation

Per-episode evaluation

[] Experience
B Evaluation
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MetaNav: experimental results

f Setup | SR(1) SPL (1) Distance to Goal (|) \
1 89.18% 40.04% 0.29
Continuous evaluation 2 76.10%  33.92% 0.97
3 64.19%  33.11% 1.99
4 23.07% 11.87% 12.23
\ 5 21.74%  9.38% 7.99 j
Setup | SR(t) SPL (1) Distance to Goal (|)
1 83.33% 40.03% 0.29
Per-episode evaluation 2 60.78% 26.58% 1.74
3 5519% 26.21% 2.54
4 16.67%  4.84% 12.72
5 25.00% 9.31% 8.19

224 Universidad
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Final results

Experimental Setup | OffNav  PirINav | MetaNav
SETUP T 100% 100% 89.18%
SETUP 2 79.31% 72.50% 76.10%
SETUP 3 75.78%  77.63% 64.19%
SETUP 4 25.00% 27.27% 23.07%
SETUP 5 34.78% 26.09% 25.00%

224 Universidad
de Alcala
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Conclusions

« Both OffNav and MetaNav are novel
approaches to robot navigation that
have demonstrated capable of
navigating.

« OffNav is able to perform better that
the behavior cloning baseline in some
scenarios.

« While MetaNav is not able to perform
better than the baseline or OffNav, it is
able to navigate and the phllosophy of
navigating on novel environments
with a few trajectories is promising.

« However, the results are not strong
enough and suggest that further
research has to be delivered to make
this methods viable.

M Universidad
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6. Final closure

Scientific trajectory, impact and final conclusions
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Bibliometric impact
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Cumulative papers by authorship (clean split)
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Bibliometric impact

Citations

Cumulative citations (Google Scholar) Citations per year (Google Scholar)
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Limitations & future work

« Add more types of multimodal sensor to make the navigation closer to that of
humans:

 Audio sensors.
e Tactile sensor.

« Explore more complex tasks: not only navigating to an object, but rearranging
room objects or following complex instructions via text.

* Try new meta learning approaches that do not heavily modify the subjacent
algorithm: the method used in chapter 5 meta adapts the whole parameters of
the model, which can hurt performance. It could be more promising to use
meta learning approaches that do not modify the parameters and could for
example represent the task information into an encoder.

224 Universidad 131
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Global Scientific Conclusions

* High performance in simulation does not guarantee real-world robustness.
« Modular architectures remain more reliable for real robotic deployment.
« Data-efficient learning is essential for scalable embodied intelligence.

TRAINING | DEPLOYMENT

Simulated Environment Real World Environment
Training agent

e observations —

rewards ——>

|¢—— actions

\
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